962 resultados para Nose-to-nose transmission
Resumo:
The phylogeny of representative haemozoan species of the phylum Apicomplexa was reconstructed by cladistic analyses of ultrastructural and life-cycle characteristics. The analysis incorporated 4 apicomplexans previously not included in phylogenetic reconstructions: Haemogregarina clelandi from the Brisbane River tortoise (Emydura signata), Hepatozoon sp. from the slaty grey snake (Stegonotus cucullatus), Hepatozoon (Haemogregarina) boigae from the brown tree snake (Boiga irregularis), and Haemoproteus chelodina from the saw-shelled tortoise (Elseya latisternum). There was no apparent correlation between parasite phylogeny and that of their vertebrate hosts, but there appeared to be some relationship between parasites and their intermediate hosts, suggestive of parasite/vector co-evolution.
Resumo:
The toadfishes Tetractenos hamiltoni and Torquigener pleurogramma (Tetraodontidae) possess occlusable yellow corneas. We examine the light transmission and location of the yellow/orange pigment throughout the cornea, the temporal properties of pigment migration and the ultrastructure of the pigmented processes during light- and dark-adaptation. Each species was dark-adapted during the day and light-adapted during the night and then exposed to either sun illumination or darkness for different lengths of time (0-70 min). Movement of corneal pigment could be induced in both species regardless of time of day or night. The pigment was able to migrate in a dorsal or ventral direction and changed from minimal to maximal pigmentation within 60 min. Three types of transmission curves were found with varying degrees of transmission in the 400-500 nm waveband, indicating that the pigment distribution is not uniform across the cornea; some areas of the cornea transmit near UV light, while others absorb blue light. The gradual change of the transmission characteristics in different areas of the cornea indicates the presence of different concentrations of a single type of pigment. Ultrastructural examination of the corneas showed that the layer containing the pigment is situated within the scleral cornea either surrounding (T. pleurogramma) or abutting (T. hamiltoni) an iridescent layer. Long sheet-like processes or chromatophores extending centrally from dorsal and ventral reservoirs are filled with pigment during the light-adapted state but empty in the dark-adapted state.
Resumo:
We report the development of epitope-blocking enzyme-linked immunosorbent assays (ELISAs) for the rapid detection of serum antibodies to West Nile virus (WNV) in taxonomically diverse North American avian species. A panel of flavivirus-specific monoclonal antibodies (MAbs) was tested in blocking assays with serum samples from WNV-infected chickens and crows. Selected MAbs were further tested against serum samples from birds that represented 16 species and 10 families. Serum samples were collected from birds infected with WW or Saint Louis encephalitis virus (SLEV) and from noninfected control birds. Serum samples from SLEV-infected birds were included in these experiments because WNV and SLEV are closely related antigenically, are maintained in similar transmission cycles, and have overlapping geographic distributions. The ELISA that utilized MAb 3.11126 potentially discriminated between WW and SLEV infections, as all serum samples from WNV-infected birds and none from SLEV-infected birds were positive in this assay. Assays with MAbs 2132 and 6B6C-1 readily detected serum antibodies in all birds infected with WNV and SLEV, respectively, and in most birds infected with the other virus. Two other MAbs partially discriminated between infections with these two viruses. Serum samples from most WNV-infected birds but no SLEV-infected birds were positive with MAb 3.676, while almost all serum samples from SLEV-infected birds but few from WNV-infected birds were positive with MAb 6B5A-5. The blocking assays reported here provide a rapid, reliable, and inexpensive diagnostic and surveillance technique to monitor WNV activity in multiple avian species.
Resumo:
Japanese encephalitis (JE) virus spread to northern Australia during the 1990s, transmitted by Culex annulirostris Skuse and other mosquitoes (Diptera: Culicidae). To determine the relative importance of various hosts for potential vectors of JE virus, we investigated the host-feeding patterns of mosquitoes in northern Australia and Western Province of Papua New Guinea, with particular attention to pigs, Sus scrofa L. - the main amplifying host of JE virus in South-east Asia. Mosquitoes were collected by CDC light traps baited with dry ice and 1-octen-3-ol, run 16.00-08.00 hours, mostly set away from human habitations, if possible in places frequented by feral pigs. Bloodmeals of 2569 mosquitoes, representing 15 species, were identified by gel diffusion assay. All species had fed mostly on mammals: only 30%) were trapped where domestic pigs were kept close to human habitation. From seven of eight locations on the Australian mainland, the majority of Cx. annulirostris had obtained their bloodmeals from marsupials, probably the Agile wallaby Macropus agilis (Gould). Overall proportions of mosquito bloodmeals identified as marsupial were 60% from the Gulf Plains region of Australia, 78% from the Cape York Peninsula and 64% from the Daru area of Papua New Guinea. Thus, despite the abundance of feral pigs in northern Australia, our findings suggest that marsupials divert host-seeking Cx. annulirostris away from pigs. As marsupials are poor JE virus hosts, the prevalence of marsupials may impede the establishment of JE virus in Australia.
Resumo:
In the previous two papers in this three-part series, we have examined visual pigments, ocular media transmission, and colors of the coral reef fish of Hawaii. This paper first details aspects of the light field and background colors at the microhabitat level on Hawaiian reefs and does so from the perspective and scale of fish living on the reef. Second, information from all three papers is combined in an attempt to examine trends in the visual ecology of reef inhabitants. Our goal is to begin to see fish the way they appear to other fish. Observations resulting from the combination of results in all three papers include the following. Yellow and blue colors on their own are strikingly well matched to backgrounds on the reef such as coral and bodies of horizontally viewed water. These colors, therefore, depending on context, may be important in camouflage as well as conspicuousness. The spectral characteristics of fish colors are correlated to the known spectral sensitivities in reef fish single cones and are tuned for maximum signal reliability when viewed against known backgrounds. The optimal positions of spectral sensitivity in a modeled dichromatic visual system are generally close to the sensitivities known for reef fish. Models also predict that both UV-sensitive and red-sensitive cone types are advantageous for a variety of tasks. UV-sensitive cones are known in some reef fish, red-sensitive cones have yet to be found. Labroid colors, which appear green or blue to us, may he matched to the far-red component of chlorophyll reflectance for camouflage. Red cave/hole dwelling reef fish are relatively poorly matched to the background they are often viewed against but this may be visually irrelevant. The model predicts that the task of distinguishing green algae from coral is optimized with a relatively long wavelength visual pigment pair. Herbivorous grazers whose visual pigments are known possess the longest sensitivities so far found. Labroid complex colors are highly contrasting complementary colors close up but combine, because of the spatial addition, which results from low visual resolution, at distance, to match background water colors remarkably well. Therefore, they are effective for simultaneous communication and camouflage.
Resumo:
The visual biology of Hawaiian reef fishes was explored by examining their eyes for spectral sensitivity of their visual pigments and for transmission of light through the ocular media to the retina. The spectral absorption curves for the visual pigments of 38 species of Hawaiian fish were recorded using microspectrophotometry. The peak absorption wavelength (lambda(max)) of the rods varied from 477-502 nm and the lambda(max) of individual species conformed closely to values for the same species previously reported using a whole retina extraction procedure. The visual pigments of single cone photoreceptors were categorized, dependent on their lambda(max)-values, as ultraviolet (347-376 nm), violet (398-431 nm) or blue (439-498 nm) sensitive cones. Eight species possessed ultraviolet-sensitive cones and 14 species violet-sensitive cones. Thus, 47% of the species examined displayed photosensitivity to the short-wavelength region of the spectrum. Both identical and nonidentical paired and double cones were found with blue sensitivity or green absorption peaks (> 500 nm). Spectrophotometry of the lens, cornea, and humors for 195 species from 49 families found that the spectral composition of the light transmitted to the retina was most often limited by the lens (73% of species examined). Except for two unusual species with humor-limited eyes, Acanthocybium solandri (Scombridae) and the priacanthid fish, Heteropriacanthus cruentatus, the remainder had corneal-limited eyes. The wavelength at which 50% of the light was blocked (T50) was classified according to a system modified from Douglas and McGuigan (1989) as Type I, T50 < = 355 nm, (32 species); Type IIa, 355 < T50 < = 380 nm (30 species); Type IIb, 380 < T50 405 nm (84 species). Possession of UV-transmitting ocular media follows both taxonomic and functional lines and, if the ecology of the species is considered, is correlated with the short-wavelength visual pigments found in the species. Three types of short-wavelength vision in fishes are hypothesized: UV-sensitive, UV-specialized, and violet-specialized. UV-sensitive eyes lack UV blockers (Type I and IIa) and can sense UV light with the secondary absorption peak or beta peak of their longer wavelength visual pigments but do not possess specialized UV receptor cells and, therefore, probably lack UV hue discrimination. UV-specialized eyes allow transmission of UV light to the retina (Type I and IIa) and also possess UV-sensitive cone receptors with peak absorption between 300 and 400 nm. Given the appropriate perceptual mechanisms, these species could possess true UV-color vision and hue discrimination. Violet-specialized eyes extend into Type IIb eyes and possess violet-sensitive cone cells. UV-sensitive eyes are found throughout the fishes from at least two species of sharks to modern bony fishes. Eyes with specialized short-wavelength sensitivity are common in tropical reef fishes and must be taken into consideration when performing research involving the visual perception systems of these fishes. Because most glass and plastics are UV-opaque, great care must be taken to ensure that aquarium dividers, specimen holding containers, etc., are UV-transparent or at least to report the types of materials in use.
Resumo:
Sodium dodecyl sulfate (SDS) is commonly used to extract polyhedra from infected cells and diseased dead larval tissues. It was found, however, that 80% of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) polyhedra produced via cell culture were damaged after 30 min of 0.5% SDS treatment whereas only 20% of in vivo produced polyhedra were damaged by the same treatment. Transmission and scanning electron microscopy revealed that the damaged polyhedra had lost their polyhedron envelopes and virions were dislodged from the polyhedrin matrix, leaving empty spaces that were previously occupied by the occluded virions. Up to 20% in vitro produced polyhedra were resistant to SDS and remained intact, even after a 24 h exposure to SDS. This sensitivity to SDS was observed across a range of cell culture media, including serum supplemented media. Electron microscopy also revealed that the inferior polyhedron envelope of in vitro produced polyhedra is likely due to poor interaction between the polyhedron envelope, polyhedron envelope protein (PEP), and polyhedrin matrix. The PEP gene was cloned and sequenced and mutations in this gene were ruled out as an explanation. In vitro produced polyhedra that were passed through insect larva once were resistant to SDS, indicating that a critical component is lacking in insect cell culture medium used for producing HaSNPV or the cells growing in culture are inefficient in some ways in relation to production of polyhedra. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
The transmission cycle of western equine encephalitis (WEE) virus in South America is unknown. A WEE virus strain was isolated from Aedes albifasciatus in Argentina during the WEE epizootic of 1982-83. Also, Culex pipiens from Argentina was reported to be able to transmit WEE virus experimentally, but other results indicate that Cx. pipiens from the USA is refractory to this virus. We determined the susceptibility of Argentina strains of Ae. albifasciatus and Culex pipiens complex mosquites to infection by WEE virus by the oral route. Adult females were fed on chicks infected with a WEE virus strain isolated in Cordoba Province, Argentina, or were fed on a blood/virus suspension. Each mosquito ingested between 10(1.6) to 10(6.4) vero cell plaque-forming units of virus. Each of 28 Ae. albifasciatus was positive for virus from the fourth day postfeeding, and there was evidence for virus replication. In contrast, 0/44 Cx. p. quinquefasciatus and only 1/15 Cx. p. pipiens was positive. Aedes albifasciatus is susceptible to infection by WEE virus and should be considered a potential vector of this virus in Argentina. Both subspecies of Cx. pipiens are refractory to peroral infection by WEE virus and probably do not play a role in the WEE virus cycle in Argentina.
Resumo:
The concept of explaining the use of an old tool like the Smith chart, using modern tools like MATLAB [1] scripts in combination with e-learning facilities, is exemplified by two MATLAB scripts. These display, step by step, the graphical procedure that must be used to solve the double-stub impedance-matching problem. These two scripts correspond to two different possible ways to analyze this matching problem, and they are important for students to learn by themselves.
Resumo:
OBJECTIVE: To show how a mathematical model can be used to describe and to understand the malaria transmission. METHODS: The effects on malaria transmission due to the impact of the global temperature changes and prevailing social and economic conditions in a community were assessed based on a previously presented compartmental model, which describes the overall transmission of malaria. RESULTS/CONCLUSIONS: The assessments were made from the scenarios produced by the model both in steady state and dynamic analyses. Depending on the risk level of malaria, the effects on malaria transmission can be predicted by the temperature ambient or local social and-economic conditions.
Resumo:
OBJECTIVE: Describe the overall transmission of malaria through a compartmental model, considering the human host and mosquito vector. METHODS: A mathematical model was developed based on the following parameters: human host immunity, assuming the existence of acquired immunity and immunological memory, which boosts the protective response upon reinfection; mosquito vector, taking into account that the average period of development from egg to adult mosquito and the extrinsic incubation period of parasites (transformation of infected but non-infectious mosquitoes into infectious mosquitoes) are dependent on the ambient temperature. RESULTS: The steady state equilibrium values obtained with the model allowed the calculation of the basic reproduction ratio in terms of the model's parameters. CONCLUSIONS: The model allowed the calculation of the basic reproduction ratio, one of the most important epidemiological variables.
Resumo:
OBJECTIVE: It is an accepted fact that confinement conditions increase the risk of some infections related to sexual and/or injecting drugs practices. Mathematical techniques were applied to estimate time-dependent incidence densities of HIV infection among inmates. METHODS: A total of 631 prisoners from a Brazilian prison with 4,900 inmates at that time were interviewed and their blood drawn. Risky behavior for HIV infection was analyzed, and serological tests for HIV, hepatitis C and syphilis were performed, intended as surrogates for parenteral and sexual HIV transmission, respectively. Mathematical techniques were used to estimate the incidence density ratio, as related to the time of imprisonment. RESULTS: Prevalence were: HIV -- 16%; HCV -- 34%; and syphilis -- 18%. The main risk behaviors related to HIV infection were HCV prevalence (OR=10.49) and the acknowledged use of injecting drugs (OR=3.36). Incidence density ratio derivation showed that the risk of acquiring HIV infection increases with the time of imprisonment, peaking around three years after incarceration. CONCLUSIONS: The correlation between HIV and HCV seroprevalence and the results of the mathematical analysis suggest that HIV transmission in this population is predominantly due to parenteral exposure by injecting drug, and that it increases with time of imprisonment.
Resumo:
OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.