988 resultados para North-Watch programme
Resumo:
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty-eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic Theta(ST) not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.
Resumo:
ISSR analysis was used to investigate genetic variations of 184 haploid and diploid samples from nine North Atlantic Chondrus crispus Stackhouse populations and one outgroup Yellow Sea Chondrus ocellatus Holmes population. Twenty-two of 50 primers were selected and 163 loci were scored for genetic diversity analysis. Genetic diversity varied among populations, percentage of polymorphic bands (PPB) ranged from 27.0 to 55.8%, H(Nei's genetic diversity) ranged from 0.11 to 0.20 and I(Shannon's information index) ranged from 0.16 to 0.30. Estimators PPB, H and I had similar values in intra-population genetic diversity, regardless of calculation methods. Analysis of molecular variance (AMOVA) apportioned inter-population and intra-population variations for C crispus, showing more genetic variance (56.5%) occurred in intra-population, and 43.5% variation among nine populations. The Mantel test suggested that genetic differentiation between nine C. crispus populations was closely related with geographic distances (R = 0.78, P = 0.002). Results suggest that, on larger distance scale (ca. > 1000 km), ISSR analysis is useful for determining genetic differentiations of C crispus populations including morphologically inseparable haploid and diploid individuals. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Suspended Particulate Matter (SPM) concentrations at various levels within the water column, together with salinity and temperature, were measured using water samples collected from six stations across the Straits of Dover. The sampling programme covered a 16-month period, undertaken during 23 cruises. On the basis of the spatial variability in the concentrations, the water bodies are divided by several boundaries, controlled by tidal and wind conditions. Within the water column, SPM concentrations were higher near the sea bed than in the surface waters. Throughout the cross-section, maximum concentrations occurred adjacent to the coastlines. Temporal variability in the SPM concentration exists on daily and seasonal scales within the coastal waters (4.2 to 74.5 mg L-1): resuspension processes, in response to semi-diurnal tidal cycles (with a period of around 12.4 h) and spring-neap cycles (with a period of 15 days) make significant contributions. Distinctive seasonal/annual concentration changes have also been observed. In the offshore waters, such variability is much less significant (0.9 to 6.0 mg L-1). In the summer the English Coastal Zone is associated with relatively high SPM concentrations: the Central Zone has a low and stable SPM concentration between these zones, there is a Transitional Zone, where there is a rapid response of SPM concentration to wind forcing. Finally, the French Coastal Zone is characterized by variable (sometimes high) SPM concentrations. Because of the zonation, SPM fluxes within the Dover Strait are controlled by different transport mechanisms. Within the Central Zone, the flux can be represented by the product of mean water discharges and SPM concentrations. However, within the coastal zones fluctuations in SPM concentrations on various time-scales must be considered. In order to calculate the maximum and minimum SPM fluxes, 10 cells were divided in the strait. A simple modelling calculation has been proposed for this complex area. The effect of spring-neap tidal cycles and seasonal changes can contribute significantly to the overall flux, which is of the order of 20 x 10(6) t.yr(-1) (through the Dover Strait, towards the North Sea). Such an estimate is higher than most obtained previously. (C) 2000 Ifremer/CNRS/IRD/Editions scientifiques et medicales Elsevier SAS.
Resumo:
Thirty-eight surficial deposit samples were collected from the equatorial North Pacific, and the natural thermoluminescence (TL) characteristics of both bulk and clay fraction samples ( < 2 mu m fractions) were studied by the FJ427 - Al automatic TL Dosimeter for the first time. With the measurements of clay mineral composition, element composition by XRD and ICP, the correlations between TL intensity and sedimentary environment proxies were analyzed, such as water depth, ratio of FeO to Fe2O3 contents, LOI, and major clay mineral concentration, and it was found the bulk sample's TL signal was stronger than the clay ones. Usually, increase in the clay components may result in the decrease of TL intensity. From the shape of TL curves, the pelagic sediments can be divided into two groups: the majority group has two glow peaks, in general, the first peak is broad and flat, but the second narrow and sharp; the minority group only has a single peak because the first is absent. The peak centers of TL curves are almost fixed, falling in the temperature sections 230 similar to 260 and 390 similar to 405 degrees C respectively. Lorentz model packed in the Origin 7.5 was chosen to deal with the TL curves. From the processing results, three parameters ( H, C and A), corresponding to the height, center, and kurtosis of TL curve, were obtained to describe the curve characteristics. The correlations between TL curve parameters and sedimentary environment proxies were also calculated. On the basis of the above work, the relationship between TL characteristics and sediment type, mineral composition, sedimentary environment of surface sediments was discussed in the study area, and a conclusion is: sediments from the environment of shallower water, higher organic contents and weaker reductivity have stronger TL signals.
Resumo:
According to the environmental characteristic of the north gulf of South China Sea, a quasi-3D mechanics model has been built for simulating the small scale sand-waves migration in the seas of southwest of Hainan Island. Based on the submarine micro-geomorphic data induced by multi-beam system and hydrographic survey record, the migrations of the sand-waves in the study area are predicted. The results show that calculation is consistent with the observation data in the groove of sand ridge, but not well in the crest of sand ridge. It is indicated that the mechanics model should be used to predict the migration of the small scale sand-waves which are dominated by bed load in the seas. This paper is very meaningful to project the route of submarine pipeline.
Resumo:
The grid altimetry data between 1993 and 2006 near the Philippines were analyzed by the method of Empirical Orthogonal Function (EOF) to study the variation of bifurcation of the North Equatorial Current at the surface of the Pacific. The relatively short-term signals with periods of about 6 months, 4 months, 3 months and 2 months are found besides seasonal and interannual variations mentioned in previous studies. Local wind stress curl plays an important role in controlling variation of bifurcation latitude except in the interannual timescale. The bifurcation latitude is about 13.3A degrees N in annual mean state and it lies at the northernmost position (14.0A degrees N) in January, at the southernmost position (12.5A degrees N) in July. The amplitude of variation of bifurcation latitude in a year is 1.5A degrees, which can mainly be explained as the contributions of the signals with periods of about 1 year (1.2A degrees) and 0.5 year (0.3A degrees).
Resumo:
Using the data of conductivity-temperature-depth (CTD) intensive observations conducted during Oct.-Nov. 2005, this study provides the first three-dimension quasi-synoptic description of the circulation in the western North Pacific. Several novel phenomena are revealed, especially in the deep ocean where earlier observations were very sparse. During the observations, the North Equatorial Current (NEC) splits at about 12A degrees N near the sea surface. This bifurcation shifts northward with depth, reaching about 20A degrees N at 1 000 m, and then remains nearly unchanged to as deep as 2 000 m. The Luzon Undercurrent (LUC), emerging below the Kuroshio from about 21A degrees N, intensifies southward, with its upper boundary surfacing around 12A degrees N. From there, part of the LUC separates from the coast, while the rest continues southward to join the Mindanao Current (MC). The MC extends to 2 000 m near the coast, and appears to be closely related to the subsurface cyclonic eddies which overlap low-salinity water from the North Pacific. The Mindanao Undercurrent (MUC), carrying waters from the South Pacific, shifts eastward upon approaching the Mindanao coast and eventually becomes part of the eastward undercurrent between 10A degrees N and 12A degrees N at 130A degrees E. In the upper 2 000 dbar, the total westward transport across 130A degrees E between 7.5A degrees N and 18A degrees N reaches 65.4 Sv (1 Sv = 10(-6) m(3)s(-1)), the northward transport across 18A degrees N from Luzon coast to 130A degrees E is up to 35.0 Sv, and the southward transport across 7.5A degrees N from Mindanao coast to 130A degrees E is 27.9 Sv.
Resumo:
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15 degrees-18 degrees N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15 degrees N with lowest salinity off shore at 21 degrees N, but mainly hugs the Mindanao coast south of 12 degrees N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10 degrees N at 130 degrees E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).
Resumo:
The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data. We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy field in this zone. We found that velocity shear between this region and the neighboring North Equatorial Current contributes greatly to the eddy generation. Furthermore, the eddy kinetic energy level (EKE) shows an annual cycle, maximum in April/May and minimum in December/January. Analyses of the temporal and spatial distributions of the eddy field revealed clearly that the velocity shear closely related to baroclinic instability processes. The eddy field seems to be more zonal than meridional, and the energy containing length scale shows a surprising lag of 2-3 months in comparison with the 1-D and 2-D EKE level. A similar phenomenon is observed in individual eddies in this zone. The results show that in this eddy field band, the velocity shear may drive the EKE level change so that the eddy field takes another 2-3 months to grow and interact to reach a relatively stable state. This explains the seasonal evolution of identifiable eddies.
Resumo:
The North Atlantic spring bloom is one of the largest annual biological events in the ocean, and is characterized by dominance transitions from siliceous (diatoms) to calcareous (coccolithophores) algal groups. To study the effects of future global change on these phytoplankton and the biogeochemical cycles they mediate, a shipboard continuous culture experiment (Ecostat) was conducted in June 2005 during this transition period. Four treatments were examined: (1) 12 degrees C and 390 ppm CO2 (ambient control), (2) 12 degrees C and 690 ppm CO2 (high pCO(2)) (3) 16 degrees C and 390 ppm CO2 (high temperature), and (4) 16 degrees C and 690 ppm CO2 ('greenhouse'). Nutrient availability in all treatments was designed to reproduce the low silicate conditions typical of this late stage of the bloom. Both elevated pCO(2) and temperature resulted in changes in phytoplankton community structure. Increased temperature promoted whole community photosynthesis and particulate organic carbon (POC) production rates per unit chlorophyll a. Despite much higher coccolithophore abundance in the greenhouse treatment, particulate inorganic carbon production (calcification) was significantly decreased by the combination of increased pCO(2) and temperature. Our experiments suggest that future trends during the bloom could include greatly reduced export of calcium carbonate relative to POC, thus providing a potential negative feedback to atmospheric CO2 concentration. Other trends with potential climate feedback effects include decreased community biogenic silica to POC ratios at higher temperature. These shipboard experiments suggest the need to examine whether future pCO2 and temperature increases on longer decadal timescales will similarly alter the biological and biogeochemical dynamics of the North Atlantic spring bloom.