999 resultados para Nonlinear contact stiffness
Resumo:
Spallation in heterogeneous media is a complex, dynamic process. Generally speaking, the spallation process is relevant to multiple scales and the diversity and coupling of physics at different scales present two fundamental difficulties for spallation modeling and simulation. More importantly, these difficulties can be greatly enhanced by the disordered heterogeneity on multi-scales. In this paper, a driven nonlinear threshold model for damage evolution in heterogeneous materials is presented and a trans-scale formulation of damage evolution is obtained. The damage evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that some dimensionless numbers govern the whole process of deformation and damage evolution. The effects of heterogeneity in terms of Weibull modulus on damage evolution in spallation process are also investigated.
Resumo:
We have recently developed a generalized JKR model for non-slipping adhesive contact between an elastic cylinder and a stretched substrate where both tangential and normal tractions are transmitted across the contact interface. Here we extend this model to a generalized Maugis-Dugdale model by adopting a Dugdale-type adhesive interaction law to eliminate the stress singularity near the edge of the contact zone. The non-slipping Maugis-Dugdale model is expected to have a broader range of validity in comparison with the non-slipping JKR model. The solution shares a number of common features with experimentally observed behaviors of cell reorientation on a cyclically stretched substrate.
Resumo:
A general incremental micromechanical scheme for the nonlinear behavior of particulate composites is presented in this paper. The advantage of this scheme is that it can reflect partly the effects of the third invariant of the stress on the overall mechanical behavior of nonlinear composites. The difficulty involved is the determination of the effective compliance tensors of the anisotropic multiphase composites. This is completed by making use of the generalized self-consistent Mori-Tanaka method which was recently developed by Dai et al. (Polymer Composites 19(1998) 506-513; Acta Mechanica Solida 18 (1998) 199-208). Comparison with existing theoretical and numerical results demonstrates that the present incremental scheme is quite satisfactory. Based on this incremental scheme, the overall mechanical behavior of a hard-particle reinforced metal matrix composite with progressive particle debonding damage is investigated.
Resumo:
In the cylindrical coordinate system, a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode by solving potential equations of water waves in a rigid circular cylinder, which is subjec
Resumo:
要: We have recently proposed a generalized JKR model for non-slipping adhesive contact between two elastic spheres subjected to a pair of pulling forces and a mismatch strain (Chen, S., Gao, H., 2006c. Non-slipping adhesive contact between mismatched elastic spheres: a model of adhesion mediated deformation sensor. J. Mech. Phys. Solids 54, 1548-1567). Here we extend this model to adhesion between two mismatched elastic cylinders. The attention is focused on how the mismatch strain affects the contact area and the pull-off force. It is found that there exists a critical mismatch strain at which the contact spontaneously dissociates. The analysis suggests possible mechanisms by which mechanical deformation can affect binding between cells and molecules in biology.
Resumo:
The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the self-assembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force, while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.
Resumo:
This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.
Resumo:
The ferroelectric specimen is considered as an aggregation of many randomly oriented domains. According to this mechanism, a multi-domain mechanical model is developed in this paper. Each domain is represented by one element. The applied stress and electric field are taken to be the stress and electric field in the formula of the driving force of domain switching for each element in the specimen. It means that the macroscopic switching criterion is used for calculating the volume fraction of domain switching for each element. By using the hardening relation between the driving force of domain switching and the volume fraction of domain switching calibrated, the volume fraction of domain switching for each element is calculated. Substituting the stress and electric field and the volume fraction of domain switching into the constitutive equation of ferroelectric material, one can easily get the strain and electric displacement for each element. The macroscopic behavior of the ferroelectric specimen is then directly calculated by volume averaging. Meanwhile, the nonlinear finite element analysis for the ferroelectric specimen is carried out. In the finite element simulation, the volume fraction of domain switching for each element is calculated by using the same method mentioned above. The interaction between different elements is taken into account in the finite element simulation and the local stress and electric field for each element is obtained. The macroscopic behavior of the specimen is then calculated by volume averaging. The computation results involve the electric butterfly shaped curves of axial strain versus the axial electric field and the hysteresis loops of electric displacement versus the electric field for ferroelectric specimens under the uniaxial coupled stress and electric field loading. The present theoretical prediction agrees reasonably with the experimental results.
Resumo:
Many experimental observations have shown that a single domain in a ferroelectric material switches by progressive movement of domain walls, driven by a combination of electric field and stress. The mechanism of the domain switch involves the following steps: initially, the domain has a uniform spontaneous polarization; new domains with the reverse polarization direction nucleate, mainly at the surface, and grow though the crystal thickness; the new domain expands sideways as a new domain continues to form; finally, the domain switch coalesces to complete the polarization reversal. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of the ferroelectric material and used to study the nonlinear constitutive behavior of a ferroelectric body in this paper. The principle of stationary total potential energy is put forward in which the basic unknown quantities are the displacement u(i), electric displacement D-i and volume fraction rho(I) of the domain switching for the variant I. The mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total potential energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion established by Hwang et al. [ 1]. Based on the domain switching criterion, a set of linear algebraic equations for determining the volume fraction rho(I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. If the volume fraction rho(I) of domain switching for each domain is prescribed, the unknown displacement and electric potential can be obtained based on the conventional finite element procedure. It is assumed that a domain switches if the reduction in potential energy exceeds a critical energy barrier. According to the experimental results, the energy barrier will strengthen when the volume fraction of the domain switching increases. The external mechanical and electric loads are increased step by step. The volume fraction rho(I) of domain switching for each element obtained from the last loading step is used as input to the constitutive equations. Then the strain and electric fields are calculated based on the conventional finite element procedure. The finite element analysis is carried out on the specimens subjected to uniaxial coupling stress and electric field. Numerical results and available experimental data are compared and discussed. The present theoretic prediction agrees reasonably with the experimental results.
Resumo:
The transitions between the different contact models which include the Hertz, Bradley, Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT) and Maugis-Dugdale (MD) models are revealed by analyzing their contact pressure profiles and surface interactions. Inside the contact area, surface interaction/adhesion induces tensile contact pressure around the contact edge. Outside the contact area, whether or not to consider the surface interaction has a significant influence on the contact system equilibrium. The difference in contact pressure due to the surface interaction inside the contact area and the equilibrium influenced by the surface interaction outside the contact area are physically responsible for the different results of the different models. A systematic study on the transitions between different models is shown by analyzing the contact pressure profiles and the surface interactions both inside and outside the contact area. The definitions of contact radius and the flatness of contact surfaces are also discussed. (C) Koninklijke Brill NV, Leiden, 2008.
Resumo:
A fully nonlinear and dispersive model within the framework of potential theory is developed for interfacial (2-layer) waves. To circumvent the difficulties arisen from the moving boundary problem a viable technique based on the mixed Eulerian and Lagrangian concept is proposed: the computing area is partitioned by a moving mesh system which adjusts its location vertically to conform to the shape of the moving boundaries but keeps frozen in the horizontal direction. Accordingly, a modified dynamic condition is required to properly compute the boundary potentials. To demonstrate the effectiveness of the current method, two important problems for the interfacial wave dynamics, the generation and evolution processes, are investigated. Firstly, analytical solutions for the interfacial wave generations by the interaction between the barotropic tide and topography are derived and compared favorably with the numerical results. Furthermore simulations are performed for the nonlinear interfacial wave evolutions at various water depth ratios and satisfactory agreement is achieved with the existing asymptotical theories. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A more generalized model of a beam resting on a tensionless Reissner foundation is presented. Compared with the Winkler foundation model, the Reissner foundation model is a much improved one. In the Winkler foundation model, there is no shear stress inside the foundation layer and the foundation is assumed to consist of closely spaced, independent springs. The presence of shear stress inside Reissner foundation makes the springs no longer independent and the foundation to deform as a whole. Mathematically, the governing equation of a beam on Reissner foundation is sixth order differential equation compared with fourth order of Winkler one. Because of this order change of the governing equation, new boundary conditions are needed and related discussion is presented. The presence of the shear stress inside the tensionless Reissner foundation together with the unknown feature of contact area/length makes the problem much more difficult than that of Winkler foundation. In the model presented here, the effects of beam dimension, gap distance, loading asymmetry and foundation shear stress on the contact length are all incorporated and studied. As the beam length increases, the results of a finite beam with zero gap distance converge asymptotically to those obtained by the previous model for an infinitely long beam. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.