898 resultados para Nonlinear and Chaotic Behavior
Resumo:
The metals present in the surface sediments have high demand on a global perspective, and the main reservoir of these elements is believed to be the ocean floor. A lot of studies on metals are going on throughout the world for its quantification and exploitation. Even though, some preliminary attempts have been made in selected areas for the quantitative study of metals in the western continental shelf of India, no comprehensive work has been reported so far. The importance of this study also lies on the fact that there has not been a proper evaluation of the impact of the Great Tsunami of 2004 on the coastal areas of the south India. In View of this, an attempt has been made to address the seasonal distribution, behavior and mechanisms which control the deposition of metals in the sediments of the western continental shelf and Cochin Estuary, an annex to this coastal marine region.Surface sediment samples were collected seasonally from two subenvironemnts of southwest coast of India, (continental shelf of Kerala and Cochin estuarine system), to estimate the seasonal distribution and geochemical behavior of non-transition, transition, rare-earth elements, Th and U. Bottom water samples were also taken from each station, and analysed for temperature, salinity and dissolved oxygen, hence the response of redox sensitive elements to oxygen minimum zone can be addressed. In addition, other sedimentary parameters such as sand, silt, clay fractions, CaCO3 and organic carbon content were also estimated to evaluate the control factors on level of metals present in the sediment. The study used different environmental data analysis techniques to evaluate the distribution and behavior of elements during different seasons. This includes environmental parameters such as elemental normalisation, enrichment factor, element excess, cerium and europium anomalies and authigenic uranium.
Resumo:
We present an experimental study of the premartensitic and martensitic phase transitions in a Ni2MnGa single crystal by using ultrasonic techniques. The effect of applied magnetic field and uniaxial compressive stress has been investigated. It has been found that they substantially modify the elastic and magnetic behavior of the alloy. These experimental findings are a consequence of magnetoelastic effects. The measured magnetic and vibrational behavior agrees with the predictions of a recently proposed Landau-type model [A. Planes et al., Phys. Rev. Lett. 79, 3926 (1997)] that incorporates a magnetoelastic coupling as a key ingredient.
Resumo:
This work presents an analysis of hysteresis and dissipation in quasistatically driven disordered systems. The study is based on the random field Ising model with fluctuationless dynamics. It enables us to sort out the fraction of the energy input by the driving field stored in the system and the fraction dissipated in every step of the transformation. The dissipation is directly related to the occurrence of avalanches, and does not scale with the size of Barkhausen magnetization jumps. In addition, the change in magnetic field between avalanches provides a measure of the energy barriers between consecutive metastable states
Resumo:
The present work deals with the investigations on sthe structural spectral and magnetic interactions of transition metal complexes of multidentate ligands from D1-2-pyridyl ketone and N(4)-Substituted thiosemicarbazides.Thiosemicarbazones are thiourea derivatives with the general formula R2N— C(S)—NH—N=CR2. In the solution state, the thiosemicarbazones exhibit the thionethiol tautomerism similar to the keto-enol tautomerism, and in solution state the thiol form predominates and a deprotonation at the thiolate group in alcoholic medium enhances the coordination abilities ofthe thiosemicarbazones.The magnetochemistry of metal complexes of di-2-pyridyl ketone is a current hot subject of research, which mainly owes to the excellent structural diversity of the complexes ranging from cubanes to clusters, with promising ferromagnetic outputs.Only few efforts were aimed at the magnetochemistry of metal complexes of thiosemicarbazones, and that too were concerned with the complexes of bisttltioscinicarbazones). However, as far as the monothiosemicarbazones are concerned, the magnetochemistry of transition metal complexes of di-2-pyridyl ketone thiosemicarbazones turned up quite unexplored. Consequently, an investigation into it appeared novel and promising to us and that prompted this study, which can be regarded as the initial step towards exploring the magnetochemistry of thiosemicarbazone complexes, especially of di-2-pyridyl ketone derivatives.We could successfully isolate single crystals suitable for X-ray diffraction for the first three ligands. To conclude, we have synthesized some new thiosemicarbazones and their transition metal complexes and studied their structural, spectral and magnetic attributes. Some ofthe complexes revealed interesting stereochemistries and possible bridging characteristics with spectroscopic evidences. Unfortunately, single crystal Xray diffraction studies could not be carried out for many of these interesting compounds due to the lack of availability of suitable quality single crystals. However, the magnetic studies provided support for the proposed stereochemistry giving evidences for their magnetically concentrated nature. The magnetic susceptibilities measured at six different temperatures in the 80-298 K range are fitted into different magnetic equations, which provided an idea about the magnetic behavior of the compounds under study. Some of the copper, oxovanadium, nickel and cobalt complexes are found to possess anomalous magnetic moments, i.e., they revealed no regular gradation with temperature. However, some other copper complexes are observed to be antiferromagnetic, due to super-exchange pathways. The manganese complexes and one of the cobalt complexes are also observed to be antiferromagnetic in nature. However, some nickel complexes have turned up to be ferromagnetic. Accordingly, the versatile stereoehemistry and magnetic behavior of the complexes studied, prompt us to conclude that the transition metal complexes of di-2-pyridyl ketone thiosemicarbazones are promising systems for potential magnetic applications.
Resumo:
With the increase in population, housing and construction of various facilities have been a problem with urbanization. Having exhausted all the trouble free hand, man is nowon the lookout for techniques to improve areas which were originally considered uninhabitable. Thus this study is based on the nature and engineering behavior of soft clays covering long stretches of coastal line and methods to improve their geotechnical properties .The main aim of the present investigation is to study in detail the physical and engineering behavior of the marine clays of Cochin. While it is well known that the marine clays have been posing numerous problems to foundation engineers all along, the relevant literature reveals that no systematic and comprehensive study has been attempted to date. The: knowledge gained through the study is suitably used to improve these properties with appropriate additives.
Resumo:
We present an experimental study of the premartensitic and martensitic phase transitions in a Ni2MnGa single crystal by using ultrasonic techniques. The effect of applied magnetic field and uniaxial compressive stress has been investigated. It has been found that they substantially modify the elastic and magnetic behavior of the alloy. These experimental findings are a consequence of magnetoelastic effects. The measured magnetic and vibrational behavior agrees with the predictions of a recently proposed Landau-type model [A. Planes et al., Phys. Rev. Lett. 79, 3926 (1997)] that incorporates a magnetoelastic coupling as a key ingredient.
Resumo:
The forms of natural rubber studied were sheet [RSS 4 and RSS 5], ISNR 20 and EBC. In the case of the latter two forms samples from estate and nonestate sectors were included. The samples were collected from different locations at specified intervals, for a particular period. The effect of the extent of mastication on raw rubber properties as well as the properties of the compounds and vulcanizates also studied. The consistency in raw rubber properties and breakdown behavior of skim rubber were studied by collecting samples periodically from selected processing units. The effect of incorporation of skim with ISNR 20 has also been investigated
Resumo:
Comets are the spectacular objects in the night sky since the dawn of mankind. Due to their giant apparitions and enigmatic behavior, followed by coincidental calamities, they were termed as notorious and called as `bad omens'. With a systematic study of these objects modern scienti c community understood that these objects are part of our solar system. Comets are believed to be remnant bodies of at the end of evolution of solar system and possess the material of solar nebula. Hence, these are considered as most pristine objects which can provide the information about the conditions of solar nebula. These are small bodies of our solar system, with a typical size of about a kilometer to a few tens of kilometers orbiting the Sun in highly elliptical orbits. The solid body of a comet is nucleus which is a conglomerated mixture of water ice, dust and some other gases. When the cometary nucleus advances towards the Sun in its orbit the ices sublimates and produces the gaseous envelope around the nucleus which is called coma. The gravity of cometary nucleus is very small and hence can not in uence the motion of gases in the cometary coma. Though the cometary nucleus is a few kilometers in size they can produce a transient, extensive, and expanding atmosphere with size several orders of magnitude larger in space. By ejecting gas and dust into space comets became the most active members of the solar system. The solar radiation and the solar wind in uences the motion of dust and ions and produces dust and ion tails, respectively. Comets have been observed in di erent spectral regions from rocket, ground and space borne optical instruments. The observed emission intensities are used to quantify the chemical abundances of di erent species in the comets. The study of various physical and chemical processes that govern these emissions is essential before estimating chemical abundances in the coma. Cameron band emission of CO molecule has been used to derive CO2 abundance in the comets based on the assumption that photodissociation of CO2 mainly produces these emissions. Similarly, the atomic oxygen visible emissions have been used to probe H2O in the cometary coma. The observed green ([OI] 5577 A) to red-doublet emission ([OI] 6300 and 6364 A) ratio has been used to con rm H2O as the parent species of these emissions. In this thesis a model is developed to understand the photochemistry of these emissions and applied to several comets. The model calculated emission intensities are compared with the observations done by space borne instruments like International Ultraviolet Explorer (IUE) and Hubble Space Telescope (HST) and also by various ground based telescopes.
Resumo:
The age and growth, length – weight relationship and relative condition factor of Gerres filamentosus (Cuvier, 1829) from Kodungallur, Azhikode Estuary were studied by examination of 396 specimens collected between May 2008 to October 2008. Here, length frequency method was used to study age and growth in fishes. L∞, K and t 0 obtained from seasonal and non - seasonal growth curves. Gerres filamentosus showed a low mortality rate (Z) 3.702 y-1. G. filamentosus has moderately low K value and long life span. The relation between the total length and weight of G. filamentosus was described as Log W = 1.321+2.5868 log L for males, Log W = 1.467 + 2.7227 log L for females and Log W = 1.481 + 2.7316 log L for sexes combined. The mean relative condition factor (Kn) values ranged from 0.9 to 1.14 for males, 0.89 to 1.11 for females and 0.73 to 1.08 for sexes combined. The length weight relationship and relative condition factor showed that the wellbeing of G. filamentosus were good. The morphometric measurements of various body parts were recorded. The morphometric measurements were found to be nonlinear and there is no significant difference observed between the two sexes.
Resumo:
Kerala, a classic ecotourism destination in India, provides significant opportunities for livelihood options to the people who depend on the resources from the forest and those who live in difficult terrains. This article analyses the socio-demographic, psychographic and travel behavior patterns and its sub-characteristics in the background of foreign and domestic tourists. The data source for the article has been obtained from a primary survey of 350 randomly chosen tourists, 175 each from domestic and foreign tourists, visiting Kerala’s ecotourists destinations during August-December 2010-11. Several socio-demographic, psychographic and life style factors have been identified based on the inference from field survey. There is considerable divergence in most of the factors identified in the case of domestic and international tourists. Post-trip attributes like satisfaction and intentions to return show that the ecotourism destinations in Kerala have significant potential that can help communities in the region.
Resumo:
A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
Polydimethylsiloxane (PDMS) is the elastomer of choice to create a variety of microfluidic devices by soft lithography techniques (eg., [1], [2], [3], [4]). Accurate and reliable design, manufacture, and operation of microfluidic devices made from PDMS, require a detailed characterization of the deformation and failure behavior of the material. This paper discusses progress in a recently-initiated research project towards this goal. We have conducted large-deformation tension and compression experiments on traditional macroscale specimens, as well as microscale tension experiments on thin-film (≈ 50µm thickness) specimens of PDMS with varying ratios of monomer:curing agent (5:1, 10:1, 20:1). We find that the stress-stretch response of these materials shows significant variability, even for nominally identically prepared specimens. A non-linear, large-deformation rubber-elasticity model [5], [6] is applied to represent the behavior of PDMS. The constitutive model has been implemented in a finite-element program [7] to aid the design of microfluidic devices made from this material. As a first attempt towards the goal of estimating the non-linear material parameters for PDMS from indentation experiments, we have conducted micro-indentation experiments using a spherical indenter-tip, and carried out corresponding numerical simulations to verify how well the numerically-predicted P(load-h(depth of indentation) curves compare with the corresponding experimental measurements. The results are encouraging, and show the possibility of estimating the material parameters for PDMS from relatively simple micro-indentation experiments, and corresponding numerical simulations.
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Social skills of children with different disabilities: Assessment and implications for interventions
Resumo:
This study characterizes the differences and similarities in the repertoire of social skills of children from 12 different categories of special educational needs: autism, hearing impairment, mild intellectual disabilities, moderate intellectual disabilities, visual impairment, phonological disorder, learning disabilities, giftedness and talent, externalizing behavior problems, internalizing behavior problems, internalizing and externalizing behavior problems and attention deficit hyperactivity disorder. Teachers of 120 students in regular and special schools, aged between 6 and 14 years old, from four Brazilian states, responded to the Social Skills Rating System. Children with ADHD, autism, internalizing and externalizing behavior problems and externalizing behavior problems presented comparatively lower frequency of social skills. The intervention needs of each evaluated category are discussed.