904 resultados para Nickel ferrite
Resumo:
A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.
Resumo:
This review collects and summarises the biological applications of the element cobalt. Small amounts of the ferromagnetic metal can be found in rock, soil, plants and animals, but is mainly obtained as a by-product of nickel and copper mining, and is separated from the ores (mainly cobaltite, erythrite, glaucodot and skutterudite) using a variety of methods. Compounds of cobalt include several oxides, including: green cobalt(II) (CoO), blue cobalt(II,III) (Co3O4), and black cobalt(III) (Co2O3); four halides including pink cobalt(II) fluoride (CoF2), blue cobalt(II) chloride (CoCl2), green cobalt(II) bromide (CoBr2), and blue-black cobalt(II) iodide (CoI2). The main application of cobalt is in its metal form in cobalt-based super alloys, though other uses include lithium cobalt oxide batteries, chemical reaction catalyst, pigments and colouring, and radioisotopes in medicine. It is known to mimic hypoxia on the cellular level by stabilizing the α subunit of hypoxia inducing factor (HIF), when chemically applied as cobalt chloride (CoCl2). This is seen in many biological research applications, where it has shown to promote angiogenesis, erythropoiesis and anaerobic metabolism through the transcriptional activation of genes such as vascular endothelial growth factor (VEGF) and erythropoietin (EPO), contributing significantly to the pathophysiology of major categories of disease, such as myocardial, renal and cerebral ischaemia, high altitude related maladies and bone defects. As a necessary constituent for the formation of vitamin B12, it is essential to all animals, including humans, however excessive exposure can lead to tissue and cellular toxicity. Cobalt has been shown to provide promising potential in clinical applications, however further studies are necessary to clarify its role in hypoxia-responsive genes and the applications of cobalt-chloride treated tissues.
Resumo:
The preparation of a series of nickel dichloride complexes with bulky diphosphinomethane chelate ligands R2PCH2PR′2 is reported. Reaction with the appropriate Grignard reagent leads to the corresponding dimethyl and dibenzyl complexes. Cationic monomethyl and mono-η3-benzyl complexes are generated from these dialkyl complexes by protonation with [H(OEt2)2]+[B(3,5-(CF3)2C6H3)4]−, while the complex [(dtbpm κ2P)Ni(η3-CH(CH2Ph)Ph]+[B(3,5-(CF3)2C6H3)4]−is obtained from protonation of the Ni(0) olefin complex (dtbpm-κ2P)N(η2-trans-stilbene). Crystal structures of examples of dichlorides, dimethyl, dibenzyl, cationic methyl, and cationic η3-benzyl complexes are reported. Solutions of the cations polymerize ethylene under mild conditions and without the necessity of an activating agent, to form polyethylene having high molecular weights and low degrees of chain branching. In comparison to the Ni methyl cations, the η3-benzyl cation complexes are more stable and somewhat less active but still very efficient in C2H4 polymerization. The effect on the resulting polyethylene of varying the substituents R, R′ on the phosphine ligand has been examined, and a clear trend for longer chain PE with less branching in the presence of more bulky substituents on the diphosphine has been found. Density functional calculations have been used to examine the rapid suprafacial η3 to η3 haptotropic shift processes of the[(R2PCH2PR′2)Ni] fragment and the η3−η1 change of the coordination mode of the benzyl group required for polymerization in those cations.
Resumo:
Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load.
Resumo:
Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of organic matter in road deposited particulates in heavy metal accumulation and transport
Resumo:
The research study discussed in the paper investigated the influence of organic matter on heavy metal adsorption for different particle size ranges of build-up solids. Samples collected from road surfaces were assessed for organic matter content, mineral composition, particle size distribution and effective cation exchange capacity. It was found that the organic matter plays a key role in >75µm particles in the adsorption of Zinc, Lead, Nickel and Copper, which are generated by traffic activities. Clay forming minerals and metal oxides of Iron, Aluminium and Manganese was found to be important for heavy metal adsorption to <75µm particles. It was also found that heavy metals adsorbed to organic matter are strongly bound to particles and these metal ions will not be bio-available if the chemical quality of the media remains stable.
Resumo:
This article presents a case study of corporate dialogue with vulnerable others. Dialogue with marginalized external groups is increasingly presented in the business literature as the key to making corporate social responsibility possible in particular through corporate learning. Corporate public communications at the same time promote community engagement as a core aspect of corporate social responsibility. This article examines the possibilities for and conditions underpinning corporate dialogue with marginalized stakeholders as occurred around the unexpected and sudden closure in January 2009 of the AU$2.2 billion BHP Billiton Ravensthorpe Nickel mine in rural Western Australia. In doing so we draw on John Roberts’ notion of dialogue with vulnerable others, and apply a discourse analysis approach to data spanning corporate public communications and interviews with residents affected by the decision to close the mine. In presenting this case study we contribute to the as yet limited organizational research concerned directly with marginalized stakeholders and argue that corporate social responsibility discourse and vulnerable other dialogue not only affirms the primacy of business interests but also co-opts vulnerable others in the pursuit of these interests. In conclusion we consider case study implications for critical understandings of corporate dialogue with vulnerable others.
Resumo:
Complexes of the type \[M(phen)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and phen = 1,10-phenanthroline) were found to co-crystallize to form molecular alloys (solid solutions of molecules) with general formula \[MAxMB1–x(phen)3](PF6)2·0.5H2O in which the relative concentrations of the metal complexes in the crystals closely match those in the crystallizing solution. Consequently, the composition of the co-crystals can be accurately predicted and controlled by modulating the relative concentrations of the metal complexes in the crystallizing solution. Although they are chemically and structurally similar, complexes of the type \[M(bipy)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and bipy = 2,2′-bipyridine) display markedly different behavior upon co-crystallization. In this case, the resulting co-crystals of general formula \[MAxMB1–x(bipy)3](PF6)2 have relative concentrations of the constituent complexes that are markedly different from the relative concentrations of the complexes initially present in the crystallizing solution. For example, when the nickel and iron complexes are co-crystallized from a solution containing a 50:50 ratio of each, the result is the formation of some crystals with a higher proportion of iron and others with a higher proportion of nickel. The relative concentrations of the metal complexes in the crystals can vary from those in the crystallizing solutions by as much as 15%. This result was observed for a range of combinations of metal complexes (Ni/Fe, Ni/Ru, and Fe/Ru) and a range of starting concentrations in the crystallizing solutions (90:10 through to 10:90 in 10% increments). To explain this remarkable result, we introduce the concept of “supramolecular selection”, which is a process driven by molecular recognition that leads to the partially selective aggregation of like molecules during crystallization.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Melting, ablation, and vapor phase condensation during atmospheric passage of the Bjurbole Meteorite
Resumo:
A detailed study of the Bjurbole fusion crust using scanning electron microscopy (SEM) and energy dispersive analysis (EDS) shows that filamentary crystals and ablation spheres may form on the meteoroid surface. Filamentary crystals, hollow spheres, and porous regions of the surface point to a period of intense vapor phase activity during atmospheric passage. Filamentary crystals can be divided into three categories on the basis of bulk composition and morphology. Two types of filamentary crystals are vapor phase condensation products formed during atmospheric entry of the meteoroid. The other type forms by the interaction of seawater with the fusion surface. The density and composition of ablation spheres varies with the flight orientation of the meteorite. The size range and composition of iron-nickel spheres on the surface of Bjurbole are similar to spheres collected in the stratosphere. A comparison of stratospheric dust collections with meteorite surfaces may provide further insight into the mechanisms of meteoroid entry into planetary atmospheres.
Resumo:
CI chondrites are used pervasively in the meteorite literature as a cosmochemical reference point for bulk compositions[1], isotope analyses[2] and, within certain models of meteorite evolution, as an important component of an alteration sequence within the carbonaceous chondrite subset[3]. More recently, the chemical variablity of CI chondrite matrices (which comprise >80% of the meteorite), has been cited in discussions about the "chondritic" nature of spectroscopic data from P/comet Halley missions[4] and of chemical data from related materials such as interplanetary dust particles[5]. Most CI chondrites have been studied as bulk samples(e.g. major and trace element abundances)and considerable effort has also been focussed on accessory phases such as magnetites, olivine, sulphates and carbonates [6-8]. A number of early studies showed that the primary constituents of CI matrices are layer silicates and the most definitive structural study on powdered samples identified two minerals: montmorillonite and serpentine[9]. In many cases, as with the study by Bass[9],the relative scarcity of most CI chondrites restricts such bulk analyses to the Orgueil meteorite. The electron microprobe/SEM has been used on petrographic sections to more precisely define the "bulk" composition of at least four CI matrices[3], and as recently summarised by McSween[3], these data define a compositional trend quite different to that obtained for CM chondrite matrices. These "defocussed-beam" microprobe analyses average major element compositions over matrix regions ~lOOµm in diameter and provide only an approximation to silicate mineral composition(s) because their grain sizes are much less than the diameter of the beam. In order to (a) more precisely define the major element compositions of individual mineral grains within CI matrices, and (b)complement previous TEM studies [11,12], we have undertaken an analytical electron microscopy (AEM) study of Alais and Orgueil matrices.
Resumo:
Atmospheric deposition is one of the most important pathways of urban stormwater pollution. Atmospheric deposition which can be in the form of either wet or dry deposition have distinct characteristics in terms of associated particulate sizes, pollutant types and influential parameters. This paper discusses the outcomes of a comprehensive research study undertaken to identify important traffic characteristics and climate factors such as antecedent dry period and rainfall characteristics which influences the characteristics of wet and dry deposition of solids and heavy metals. The outcomes confirmed that Zinc (Zn) is correlated with traffic volume whereas Lead (Pb), Cadmium (Cd), Nickel (Ni), and Copper (Cu) are correlated with traffic congestion. Consequently, reducing traffic congestion will be more effective than reducing traffic volume for improving air quality particularly in relation to Pb, Cd, Ni, and Cu. Zn was found to have the highest atmospheric deposition rate compared to other heavy metals. Zn in dry deposition is associated with relatively larger particle size fractions (>10 µm), whereas Pb, Cd, Ni and Cu are associated with relatively smaller particle size fractions (<10 µm). The analysis further revealed that bulk (wet plus dry) deposition which is correlated with rainfall depth and contains a relatively higher percentage of smaller particles compared to dry deposition which is correlated with the antecedent dry period. As particles subjected to wet deposition are smaller, they disperse over a larger area from the source of origin compared to particles subjected to dry deposition as buoyancy forces become dominant for smaller particles compared to the influence of gravity. Furthermore, exhaust emission particles were found to be primarily associated with bulk deposition compared to dry deposition particles which mainly originate from vehicle component wear.
Resumo:
Reliable approaches for predicting pollutant build-up are essential for accurate urban stormwater quality modelling. Based on the in-depth investigation of metal build-up on residential road surfaces, this paper presents empirical models for predicting metal loads on these surfaces. The study investigated metals commonly present in the urban environment. Analysis undertaken found that the build-up process for metals primarily originating from anthropogenic (copper and zinc) and geogenic (aluminium, calcium, iron and manganese) sources were different. Chromium and nickel were below detection limits. Lead was primarily associated with geogenic sources, but also exhibited a significant relationship with anthropogenic sources. The empirical prediction models developed were validated using an independent data set and found to have relative prediction errors of 12-50%, which is generally acceptable for complex systems such as urban road surfaces. Also, the predicted values were very close to the observed values and well within 95% prediction interval.
Resumo:
The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.