974 resultados para Ni(II) complexes,
Resumo:
A series of compounds of general formula [Ru(eta(6)-p-cymene) (R(2)acac)(PTA)][X] (R(2)acac = Me(2)acac, tBu(2)acac, Ph(2)acac, Me(2)acac-Cl; PTA = 1,3,5-triaza-7-phosphaadamantane; X = BPh4, BF4), and the precursor to the Me2acac-Cl derivative [Ru(eta(6)-p-cymene)(Me(2)acac-Cl)Cl], have been prepared and characterised spectroscopically. Five of the compounds have also been characterised in the solid state by X-ray crystallography. The tetrafluoroborate salts are water-soluble, quite resistant to hydrolysis, and have been evaluated for cytotoxicity against A549 lung carcinoma and A2780 human ovarian cancer cells. The compounds are cytotoxic towards the latter cell line, and relative activities are discussed in terms of hydrolysis (less important) and lipophilicity, which appears to exert the dominating influence.
Resumo:
Soluble MHC-peptide complexes, commonly known as tetramers, allow the detection and isolation of antigen-specific T cells. Although other types of soluble MHC-peptide complexes have been introduced, the most commonly used MHC class I staining reagents are those originally described by Altman and Davis. As these reagents have become an essential tool for T cell analysis, it is important to have a large repertoire of such reagents to cover a broad range of applications in cancer research and clinical trials. Our tetramer collection currently comprises 228 human and 60 mouse tetramers and new reagents are continuously being added. For the MHC II tetramers, the list currently contains 21 human (HLA-DR, DQ and DP) and 5 mouse (I-A(b)) tetramers. Quantitative enumeration of antigen-specific T cells by tetramer staining, especially at low frequencies, critically depends on the quality of the tetramers and on the staining procedures. For conclusive longitudinal monitoring, standardized reagents and analysis protocols need to be used. This is especially true for the monitoring of antigen-specific CD4+ T cells, as there are large variations in the quality of MHC II tetramers and staining conditions. This commentary provides an overview of our tetramer collection and indications on how tetramers should be used to obtain optimal results.
Resumo:
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorptionionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycinruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycinruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycinruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycinruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate
Resumo:
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycin-ruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycin-ruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycin-ruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycin-ruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.
Resumo:
A general overview on the photochemical behaviour of [Ru(NH3)5L]2+ complexes (where L is a p ligand) is presented. The proposed mechanisms and techniques employed for the study of these reactions are discussed. Emphasis is made on the mechanisms that allow the identification of the reactive excited state of the [Ru(NH3)5py]2+ complex.
Resumo:
Stability constants of complexes formed by copper (II) with three different tetracyclines (tetracycline, oxytetracycline and chlortetracycline) have been determined potentiometrically with an automatic system in aqueous medium at 25,0 ± 0,2 ºC and I = 0,1 mol L-1 NaNO3. The protonation constants of the three tetracyclines were also determined under the same conditions. The distribution of the complexes was then simulated at therapeutic levels of the drugs.
Resumo:
The reactions of four new unsymmetrical N,O-donor ligands, {H2BBPETEN= [N-(2-hydroxybenzyl) - N,N' - bis(2 methylpyridyl) -N'-(hydroxyethyl) ethylenodiamine], H3BPETEN=[N,N'- bis(2-hydroxybenzyl) -N- (2-methylpyridyl) -N'- (hydroxyethyl) ethylenodiamine], HTPETEN=[N,N,N'- tris(2-methylpyridyl) -N'- (hydroxyethyl) ethylenodiamine] and H3BIMETEN=[N,N'-(2-hydroxybenzyl)-N-(1-methylimidazol-2-il-methyl)-N'- (hydroxyethyl)ethylenodiamine]}, with Cu(II) salts afforded the following mononuclear compounds: [CuII(HBBPETEN)]ClO4, [CuII(H2BPETEN)]ClO4 , [CuII(HTPETEN)](PF6)2 and [CuII(H2BIMETEN)]ClO4 . All were characterized by EPR, electronic spectroscopy and electrochemistry. The four copper (II) compounds showed interesting electrochemistry properties. All presented an anodic wave that can be attributed to the Cu (I) oxide formation at the electrode surface, or to a Cu0 sediment at the same surface or yet, to Cu(I) -> Cu(II) oxidation process with coupled chemistry reaction, due to their irreversibility. Two of the complexes are described as interesting synthetic models for the active site of the metalloenzyme galactose oxidase.
Resumo:
The interaction of mercury(II) with sulfathiazole has been analyzed. IR and NMR spectral studies suggest a coordination of Hg(II) with the Nthiazolic atom, unlike related Hg-sulfadrugs compounds. The complex was screened for its activity against Escherichia coli, showing an appreciable antimicrobial activity compared with the ligand.
Resumo:
In an attempt to reduce toxicity and widen the spectrum of activity of cisplatin and its analogues, much attention has been focused on designing new platinum complexes. This work reports the synthesis and characterization of novel compounds of the platinum (II) and platinum (IV) containing 2-furoic hydrazide acid and iodide as ligands. Although the prepared compounds do not present the classical structure of biologically active platinum analogues, they could be potentially active or useful as precursors to prepare antitumor platinum complexes. The reported compounds were characterized by ¹H NMR, 13C NMR, 195Pt NMR, IR and elemental analyses.
Resumo:
There has been a considerable interest in coordination complexes of molecular nitrogen (N2), partly due to a possible relationship between such complexes and the nitrogen activation process in nature. The present paper describes the synthesis and infrared spectroscopic characterization of an iron-nitrogen derivative with ethylenediamine-N,N,N',N'-tetraacetate (edta) as an experiment for an undergraduate course. The topics covered here include synthesis, reactivity and spectroscopy.
Resumo:
Potentiometric studies of sulfathiazole (HST) in the presence and absence of cobalt(II) were performed. Equilibrium constants for the formation of the detected species, [Co(ST)]+ and [Co(ST)(OH)], are reported. UV-Vis spectrophotometric measurements suggest that the coordination Co(II)-sulfathiazole might be through a N atom, which, in agreement with MO calculations, could be a thiazolic one. In spite of sulfonamides being better ligands at pH >7, [Co(ST)]+ was found at pH » 3.
Resumo:
This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.