852 resultados para New Generation Rollingstock Depot
Resumo:
Thanks to a passive cavity configuration, modulational instability in fibers is successfully observed, for the first time to our knowledge, in the continuous-wave regime. Our technique provides a new means of generating all-optically ultrahigh-repetition-rate pulse trains and opens up new possibilities for the fundamental study of modulational instability and related phenomena. © 2001 Optical Society of America.
Resumo:
FUELCON is an expert system in nuclear engineering. Its task is optimized refueling-design, which is crucial to keep down operation costs at a plant. FUELCON proposes sets of alternative configurations of fuel-allocation; the fuel is positioned in a grid representing the core of a reactor. The practitioner of in-core fuel management uses FUELCON to generate a reasonably good configuration for the situation at hand. The domain expert, on the other hand, resorts to the system to test heuristics and discover new ones, for the task described above. Expert use involves a manual phase of revising the ruleset, based on performance during previous iterations in the same session. This paper is concerned with a new phase: the design of a neural component to carry out the revision automatically. Such an automated revision considers previous performance of the system and uses it for adaptation and learning better rules. The neural component is based on a particular schema for a symbolic to recurrent-analogue bridge, called NIPPL, and on the reinforcement learning of neural networks for the adaptation.
Resumo:
The Guardian newspaper (21st October 2005) informed its readers that: "Stanford University in California is to make its course content available on iTunes...The service, Stanford on iTunes, will provide…downloads of faculty lectures, campus events, performances, book readings, music recorded by Stanford students and even podcasts of Stanford football games". The emergence of Podcasting as means of sending audio data to users has clearly excited educational technologists around the world. This paper will explore the technologies behind Podcasting and how this could be used to develop and deliver new E-Learning material. The paper refers to the work done to create Podcasts of lectures for University of Greenwich students.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their non-deterministic performance. Although CAMs are favoured by technology vendors due to their deterministic high lookup rates, they suffer from the problems of high power dissipation and high silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multi-level cutting the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
The mechanism of harmonic generation in the interaction of short laser pulses with solid targets holds the promise for the production of intense attosecond pulses. Using the three dimensional code ILLUMINATION we have performed simulations pertaining to an experimentally realizable parameter range by high power laser systems to become available in the near future. The emphasis of the investigation is on the coherent nature of the emission. We studied the influence of the plasma scale length on the harmonic efficiency, angular distribution and the focusability using a post processing scheme in which the far-field of the emission is calculated. It is found that the presence of an extended density profile reduces significantly the transverse coherence length of the emitted XUV light. The different stages of the interaction for two particular cases can be followed with the help of movies.
Resumo:
A new universal power quality manager is proposed. The proposal treats a number of power quality problems simultaneously. The universal manager comprises a combined series and shunt three-phase PWM controlled converters sharing a common DC link. A control scheme based on fuzzy logic is introduced and the general features of the design and operation processes are outlined. The performance of two configurations of the proposed power quality manager are compared in terms of a recently formulated unified power quality index. The validity and integrity of the proposed system is proved through computer simulated experiments
Resumo:
As James Scott’s Seeing Like a State attests, forests played a central role in the rise of the modern state, specifically as test spaces for evolving methods of managing state resources at a distance, and as the location for grand state schemes. Together, such ambitions necessitated both the elimination of local understandings of forest management – to be replaced by centrally controlled scientific precision – and a narrowing of state vision. Forests thus began to be conflated with trees (and their timber) alone. All other aspects of the forest, both human and non-human, were ignored. Through the lens of the 18th and early 19th century New Forest in southern England, this paper examines the impact of government attempts to shift the focus of state forests from being remnant medieval hunting spaces to spaces of income generation through the creation of vast sylvicultural plantations. This state scheme not only reworked the relationship between the metropole and the provinces – something effected through systematic surveys and novel bureaucratic procedures – but also dramatically impacted upon the biophysical and cultural geographies of the forest. By equating forest space with trees alone, the British state failed to legislate for the actions of both local commoners and non-human others in resisting their schemes. Indeed, subsequent oppositions proved not only the tenacity of commoners in protecting their livelihoods but also the destructive power of non-human actants, specifically rabbits and mice. The paper concludes that grand state schemes necessarily fail due to their own internal illogic: the narrowing of state vision creates blind spots in which human and non-human lives assert their own visions.
Resumo:
Relevant mouse models of E2a-PBX1-induced pre-B cell leukemia are still elusive. We now report the generation of a pre-B leukemia model using E2a-PBX1 transgenic mice, which lack mature and precursor T-cells as a result of engineered loss of CD3epsilon expression (CD3epsilon(-/-)). Using insertional mutagenesis and inverse-PCR, we show that B-cell leukemia development in the E2a-PBX1 x CD3epsilon(-/-) compound transgenic animals is significantly accelerated when compared to control littermates, and document several known and novel integrations in these tumors. Of all common integration sites, a small region of 19 kb in the Hoxa gene locus, mostly between Hoxa6 and Hoxa10, represented 18% of all integrations in the E2a-PBX1 B-cell leukemia and was targeted in 86% of these leukemias compared to 17% in control tumors. Q-PCR assessment of expression levels for most Hoxa cluster genes in these tumors revealed an unprecedented impact of the proviral integrations on Hoxa gene expression, with tumors having one to seven different Hoxa genes overexpressed at levels up to 6600-fold above control values. Together our studies set the stage for modeling E2a-PBX1-induced B-cell leukemia and shed new light on the complexity pertaining to Hox gene regulation. In addition, our results show that the Hoxa gene cluster is preferentially targeted in E2a-PBX1-induced tumors, thus suggesting functional collaboration between these oncogenes in pre-B-cell tumors.
Resumo:
This paper gives an overview of the research done since 1999 at Eindhoven University of Technology in the Netherlands in the field of miniaturization of heterogeneous catalytic reactors. It is described that different incentives exist for the development of these microstructured reaction systems. These include the need for efficient research instruments in catalyst development and screening, the need for small-scale reactor devices for hydrogen production for low-power electricity generation with fuel cells, and the recent quest for intensified processing equipment and novel process architectures (as in the fine chemicals sector). It is demonstrated that also in microreaction engineering, catalytic engineering and reactor design go hand-in-hand. This is illustrated by the design of an integrated microreactor and heat-exchanger for optimum performance of a highly exothermic catalytic reaction, viz. ammonia oxidation. It is argued that future developments in catalytic microreaction technology will depend on the availability of very active catalysts (and catalyst coating techniques) for which microreactors may become the natural housing.
Resumo:
The destruction of stearic acid (SA), the SA test, is a popular approach used to evaluate the activities of photocatalytic films. The destruction of SA via semiconductor photocatalysis is monitored simultaneously, using FT-IR spectroscopy, via the disappearance of SA and the appearance of CO2, Sol-gel and P25 films of titania are used as the semiconductor photocatalytic self-cleaning films. A conversion factor is used of 9.7 x 1015 molecules of SA cm(-2) 1 Cru-1 integrated areas of the peaks in the Fr-IR of SA over the range 2700-3000 cm(-1), which is three times that reported previously by others. As the SA disappeared the concomitant amount of CO2 generated was > 90% that expected throughout the photomineralisation process for the sol-gel titania film. In contrast, the slightly more active, and scattering, P25 fitania films generated CO2 levels that dipped as low as 69% during the course of the photoreaction, but eventually recovered to congruent to 100% that expected based on the amount of SA present. The importance of these results with respect to SA test and the evaluation of new and existing self-cleaning films are discussed briefly. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The accurate control of the relative phase of multiple distinct sources of radiation produced by high harmonic generation is of central importance in the continued development of coherent extreme UV (XUV) and attosecond sources. Here, we present a novel approach which allows extremely accurate phase control between multiple sources of high harmonic radiation generated within the Rayleigh range of a single-femtosecond laser pulse using a dualgas, multi-jet array. Fully ionized hydrogen acts as a purely passive medium and allows highly accurate control of the relative phase between each harmonic source. Consequently, this method allows quantum path selection and rapid signal growth via the full coherent superposition of multiple HHG sources (the so-called quasi-phase-matching). Numerical simulations elucidate the complex interplay between the distinct quantum paths observed in our proof-of-principle experiments.
Resumo:
We made numerical simulations of the generation of narrowband beams of extreme ultraviolet radiation from intense laser interaction with a blazed grating surface. Strong fifth harmonic emission into its blazed diffraction order was observed as well as heavy suppression of the fundamental frequency with comparison to a typical harmonic spectrum from a flat target. The results demonstrate a new highly efficient method of generating near-monochromatic harmonics from the fundamental with minimal effect on the pulse duration. (C) 2011 Optical Society of America
Resumo:
Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.
Resumo:
A new scheme for quasi-phasematching high harmonic generation (HHG) in gases is proposed. In this, the rapid variation of the axial intensity resulting from excitation of more than one mode of a waveguide is used to achieve quasi phasematching. Numerical modeling demonstrates enhancement of the harmonic signal over that achieved for a single coherence length by factors > 10(4). (C) 2007 Optical Society of America