1000 resultados para Netowork Flow Analyzer
Resumo:
Alterations in salivary parameters may increase the caries risk in diabetic children, but, contradictory data on this issue have been reported. The aims of this study were to compare salivary parameters (flow rate, pH and calcium concentration) between healthy and type 1 diabetes mellitus (T1DM) individuals. The sample consisted of 7- to 18-year-old individuals divided into two groups: 30 subjects with T1DM (group A) and 30 healthy control subjects (group B). Fasting glucose levels were determined. Unstimulated and stimulated saliva was collected. The pH of unstimulated saliva was measured with paper strips and an electrode. Calcium concentrations in stimulated saliva were determined with a selective electrode. Group A individuals had inadequate blood glucose control (HbA1C >9%), with means ± SD unstimulated salivary flow rate of 0.15 ± 0.1 mL/min compared to 0.36 ± 0.2 mL/min for group B (P < 0.01). Stimulated salivary flow rate was similar by both groups and above 2.0 mL/min. Saliva pH was 6.0 ± 0.8 for group A and significantly different from 7.0 ± 0.6 for group B (P < 0.01). Salivary calcium was 14.7 ± 8.1 mg/L for group A and significantly higher than 9.9 ± 6.4 mg/L for group B (P < 0.01). Except for elevated calcium concentrations in saliva, salivary parameters favoring caries such as low saliva pH and unstimulated salivary flow rate were observed in T1DM individuals.
Resumo:
We determined the influence of fasting (FAST) and feeding (FED) on cholesteryl ester (CE) flow between high-density lipoproteins (HDL) and plasma apoB-lipoprotein and triacylglycerol (TG)-rich emulsions (EM) prepared with TG-fatty acids (FAs). TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001) and a negative correlation from EM to HDL (r = -041, P = 0.0088). Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.
Resumo:
Dye exclusion tests are used to determine the number of live and dead cells. These assays are based on the principle that intact plasma membranes in live cells exclude specific dyes, whereas dead cells do not. Although widely used, the trypan blue (TB) exclusion assay has limitations. The dye can be incorporated by live cells after a short exposure time, and personal reliability, related to the expertise of the analyst, can affect the results. We propose an alternative assay for evaluating cell viability that combines the TB exclusion test and the high sensitivity of the flow cytometry technique. Previous studies have demonstrated the ability of TB to emit fluorescence when complexed with proteins. According to our results, TB/bovine serum albumin and TB/cytoplasmic protein complexes emit fluorescence at 660 nm, which is detectable by flow cytometry using a 650-nm low-pass band filter. TB at 0.002% (w/v) was defined as the optimum concentration for distinguishing unstained living cells from fluorescent dead cells, and fluorescence emission was stable for 30 min after cell treatment. Although previous studies have shown that TB promotes green fluorescence quenching, TB at 0.002% did not interfere with green fluorescence in human live T-cells stained with anti-CD3/fluorescein isothiocyanate (FITC) monoclonal antibody. We observed a high correlation between the percentage of propidium iodide+CD3/FITC+ and TB+CD3/FITC+ cells, as well as similar double-stained cell profiles in flow cytometry dot-plot graphs. Taken together, the results indicate that a TB exclusion assay by flow cytometry can be employed as an alternative tool for quick and reliable cell viability analysis.
Resumo:
This study aimed to examine the time course of endothelial function after a single handgrip exercise session combined with blood flow restriction in healthy young men. Nine participants (28±5.8 years) completed a single session of bilateral dynamic handgrip exercise (20 min with 60% of the maximum voluntary contraction). To induce blood flow restriction, a cuff was placed 2 cm below the antecubital fossa in the experimental arm. This cuff was inflated to 80 mmHg before initiation of exercise and maintained through the duration of the protocol. The experimental arm and control arm were randomly selected for all subjects. Brachial artery flow-mediated dilation (FMD) and blood flow velocity profiles were assessed using Doppler ultrasonography before initiation of the exercise, and at 15 and 60 min after its cessation. Blood flow velocity profiles were also assessed during exercise. There was a significant increase in FMD 15 min after exercise in the control arm compared with before exercise (64.09%±16.59%, P=0.001), but there was no change in the experimental arm (-12.48%±12.64%, P=0.252). FMD values at 15 min post-exercise were significantly higher for the control arm in comparison to the experimental arm (P=0.004). FMD returned to near baseline values at 60 min after exercise, with no significant difference between arms (P=0.424). A single handgrip exercise bout provoked an acute increase in FMD 15 min after exercise, returning to near baseline values at 60 min. This response was blunted by the addition of an inflated pneumatic cuff to the exercising arm.
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
Fluid flow behaviour in porous media is a conundrum. Therefore, this research is focused on filtration-volumetric characterisation of fractured-carbonate sediments, coupled with their proper simulation. For this reason, at laboratory rock properties such as pore volume, permeability and porosity are measured, later phase permeabilities and oil recovery in function of flow rate are assessed. Furthermore, the rheological properties of three oils are measured and analysed. Finally based on rock and fluid properties, a model using COMSOL Multiphysics is built in order to compare the experimental and simulated results. The rock analyses show linear relation between flow rate and differential pressure, from which phase permeabilities and pressure gradient are determined, eventually the oil recovery under low and high flow rate is established. In addition, the oils reveal thixotropic properties as well as non-Newtonian behaviour described by Bingham model, consequently Carreau viscosity model for the used oil is given. Given these points, the model for oil and water is built in COMSOL Multiphysics, whereupon successfully the reciprocity between experimental and simulated results is analysed and compared. Finally, a two-phase displacement model is elaborated.
Resumo:
Studying testis is complex, because the tissue has a very heterogeneous cell composition and its structure changes dynamically during development. In reproductive field, the cell composition is traditionally studied by morphometric methods such as immunohistochemistry and immunofluorescence. These techniques provide accurate quantitative information about cell composition, cell-cell association and localization of the cells of interest. However, the sample preparation, processing, staining and data analysis are laborious and may take several working days. Flow cytometry protocols coupled with DNA stains have played an important role in providing quantitative information of testicular cells populations ex vivo and in vitro studies. Nevertheless, the addition of specific cells markers such as intracellular antibodies would allow the more specific identification of cells of crucial interest during spermatogenesis. For this study, adult rat Sprague-Dawley rats were used for optimization of the flow cytometry protocol. Specific steps within the protocol were optimized to obtain a singlecell suspension representative of the cell composition of the starting material. Fixation and permeabilization procedure were optimized to be compatible with DNA stains and fluorescent intracellular antibodies. Optimization was achieved by quantitative analysis of specific parameters such as recovery of meiotic cells, amount of debris and comparison of the proportions of the various cell populations with already published data. As a result, a new and fast flow cytometry method coupled with DNA stain and intracellular antigen detection was developed. This new technique is suitable for analysis of population behavior and specific cells during postnatal testis development and spermatogenesis in rodents. This rapid protocol recapitulated the known vimentin and γH2AX protein expression patterns during rodent testis ontogenesis. Moreover, the assay was applicable for phenotype characterization of SCRbKO and E2F1KO mouse models.
Resumo:
A primary interest of image analysis of X-rayed seeds is to identify whether the extent of fill in the embryo cavity is associated with to seed physiological quality. The objective of this research was to verify the accuracy of the freely available Tomato Analyzer (TA) software developed at The Ohio State University to determine the ratio of embryo size over total seed area. Seeds of pumpkin, watermelon, cucumber and cotton were X-rayed and analyzed by the software which defines seed and embryo boundaries and automatically generates numerical values to quantify that ratio. Results showed that the TA has the sensitivity to evaluate the extent of embryo growth within the cucurbits and cotton seeds and is a promising alternative for this assessment in other seed species.
Resumo:
A flow injection hydride generation direct current plasma atomic emission spectrometric (FI-HG-DCP-AES) method was developed for the determination of lead at ng.ml-l level. Potassium ferricyanide (K3Fe(CN)6) was used along with sodium tetrahydroborate(III) (NaBH4) to produce plumbane (PbH4) in an acid medium. The design of a gas-liquid separator (hydride generator) was tested and the parameters of the flow injection system were optimized to achieve a good detection limit and sample throughput. The technique developed gave a detection limit of 0.7 ng.ml-l(3ob). The precision at 20 ng.ml"* level was 1.6 % RSD with 1 1 measurements (n=l 1). Volume of sample loop was 500 |J.l. A sample throughput of 120 h"^ was achieved. The transition elements, Fe(II), FeOH), Cd(n), Co(II), Mn(n), Ni(II) and Zn(n) do not interfere in this method but 1 mg,l'l Cu(II) will suppress 50 % of the signal from a sample containing 20 ng.ml'l Pb. This method was successfully applied to determine lead in a calcium carbonate (CaC03) matrix of banded coral skeletons from Si-Chang Island in Thailand.
Resumo:
Although medium sized, muscular vessels normally respond to sympathetic stimulation by reducing compliance, it is unclear whether the large brachial artery is similarly affected by sympathetic stimulation induced via lower-body negative pressure (LBNP). Similarly, the impact of flow-mediated dilation (FMD) on brachial artery compliance and distensibility remains unresolved, hi addition, before such measures can be used as prognostic tools, it is important to investigate the reliability and repeatability of both techniques. Using a randomized order design, the effects of LBNP and FMD on the mechanical properties of the brachial artery were examined in nine healthy male subjects (mean age 24y). Non-invasive Doppler ultrasound and a Finometer were used to measure simultaneously the variation in systolic and diastolic diameter, and brachial blood pressure, respectively. These values were used to calculate compliance and distensibility values at baseline, and during both LBNP and FMD. The within-day and between-day repeatability of arterial diameter, compliance, distensibility, and FMD measures were assessed using the error coefficient and intra-class correlation coefficient (ICC). While heart rate (P<0.01) and peripheral resistance increased during LBNP (P<0.05), forearm blood flow and pulse pressure decreased (P<0.01). hi terms of mechanical properties, vessel diameters decreased (P<0.05), but both compliance and distensibility were not changed. On the other hand, FMD resulted in a significant increase in diameter (P<0.001), with no change in compliance or distensibility. hi summary, LBNP and FMD do not appear to alter brachial artery compliance or distensibility in young, healthy males. Whereas measures ofFMD were not found to be repeatable between days, the ICC indicated that compliance and distensibility were repeatable only within-day.
Resumo:
A simple, low-cost concentric capillary nebulizer (CCN) was developed and evaluated for ICP spectrometry. The CCN could be operated at sample uptake rates of 0.050-1.00 ml min'^ and under oscillating and non-oscillating conditions. Aerosol characteristics for the CCN were studied using a laser Fraunhofter diffraction analyzer. Solvent transport efficiencies and transport rates, detection limits, and short- and long-term stabilities were evaluated for the CCN with a modified cyclonic spray chamber at different sample uptake rates. The Mg II (280.2nm)/l\/lg 1(285.2nm) ratio was used for matrix effect studies. Results were compared to those with conventional nebulizers, a cross-flow nebulizer with a Scott-type spray chamber, a GemCone nebulizer with a cyclonic spray chamber, and a Meinhard TR-30-K3 concentric nebulizer with a cyclonic spray chamber. Transport efficiencies of up to 57% were obtained for the CCN. For the elements tested, short- and long-term precisions and detection limits obtained with the CCN at 0.050-0.500 ml min'^ are similar to, or better than, those obtained on the same instrument using the conventional nebulizers (at 1.0 ml min'^). The depressive and enhancement effects of easily ionizable element Na, sulfuric acid, and dodecylamine surfactant on analyte signals with the CCN are similar to, or better than, those obtained with the conventional nebulizers. However, capillary clog was observed when the sample solution with high dissolved solids was nebulized for more than 40 min. The effects of data acquisition and data processing on detection limits were studied using inductively coupled plasma-atomic emission spectrometry. The study examined the effects of different detection limit approaches, the effects of data integration modes, the effects of regression modes, the effects of the standard concentration range and the number of standards, the effects of sample uptake rate, and the effect of Integration time. All the experiments followed the same protocols. Three detection limit approaches were examined, lUPAC method, the residual standard deviation (RSD), and the signal-to-background ratio and relative standard deviation of the background (SBR-RSDB). The study demonstrated that the different approaches, the integration modes, the regression methods, and the sample uptake rates can have an effect on detection limits. The study also showed that the different approaches give different detection limits and some methods (for example, RSD) are susceptible to the quality of calibration curves. Multicomponents spectral fitting (MSF) gave the best results among these three integration modes, peak height, peak area, and MSF. Weighted least squares method showed the ability to obtain better quality calibration curves. Although an effect of the number of standards on detection limits was not observed, multiple standards are recommended because they provide more reliable calibration curves. An increase of sample uptake rate and integration time could improve detection limits. However, an improvement with increased integration time on detection limits was not observed because the auto integration mode was used.