959 resultados para NONMATCHING IMPLANT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of socket prostheses Currently, for individuals with limb loss, the conventional method of attaching a prosthetic limb relies on a socket that fits over the residual limb. However, there are a number of issues concerning the use of a socket (e.g., blisters, irritation, and discomfort) that result in dissatisfaction with socket prostheses, and these lead ultimately a significant decrease in quality of life. Bone-anchored prosthesis Alternatively, the concept of attaching artificial limbs directly to the skeletal system has been developed (bone anchored prostheses), as it alleviates many of the issues surrounding the conventional socket interface.Bone anchored prostheses rely on two critical components: the implant, and the percutaneous abutment or adapter, which forms the connection for the external prosthetic system (Figure 1). To date, an implant that screws into the long bone of the residual limb has been the most common intervention. However, more recently, press-fit implants have been introduced and their use is increasing. Several other devices are currently at various stages of development, particularly in Europe and the United States. Benefits of bone-anchored prostheses Several key studies have demonstrated that bone-anchored prostheses have major clinical benefits when compared to socket prostheses (e.g., quality of life, prosthetic use, body image, hip range of motion, sitting comfort, ease of donning and doffing, osseoperception (proprioception), walking ability) and acceptable safety, in terms of implant stability and infection. Additionally, this method of attachment allows amputees to participate in a wide range of daily activities for a substantially longer duration. Overall, the system has demonstrated a significant enhancement to quality of life. Challenges of direct skeletal attachment However, due to the direct skeletal attachment, serious injury and damage can occur through excessive loading events such as during a fall (e.g., component damage, peri-prosthetic fracture, hip dislocation, and femoral head fracture). These incidents are costly (e.g., replacement of components) and could require further surgical interventions. Currently, these risks are limiting the acceptance of bone-anchored technology and the substantial improvement to quality of life that this treatment offers. An in-depth investigation into these risks highlighted a clear need to re-design and improve the componentry in the system (Figure 2), to improve the overall safety during excessive loading events. Aim and purposes The ultimate aim of this doctoral research is to improve the loading safety of bone-anchored prostheses, to reduce the incidence of injury and damage through the design of load restricting components, enabling individuals fitted with the system to partake in everyday activities, with increased security and self-assurance. The safety component will be designed to release or ‘fail’ external to the limb, in a way that protects the internal bone-implant interface, thus removing the need for restorative surgery and potential damage to the bone. This requires detailed knowledge of the loads typically experienced by the limb and an understanding of potential overload situations that might occur. Hence, a comprehensive review of the loading literature surrounding bone anchored prostheses will be conducted as part of this project, with the potential for additional experimental studies of the loads during normal activities to fill in gaps in the literature. This information will be pivotal in determining the specifications for the properties of the safety component, and the bone-implant system. The project will follow the Stanford Biodesign process for the development of the safety component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose — Osseointegrated implants are an alternative for prosthetic attachment in individuals with amputation who are unable to wear a socket. However, the load transmitted through the osseointegrated fixation to the residual tibia and knee joint can be unbearable for those with transtibial amputation and knee arthritis. We report on the feasibility of combining total knee replacement (TKR) with an osseointegrated implant for prosthetic attachment. Patients and methods — We retrospectively reviewed all 4 cases (aged 38–77 years) of transtibial amputations managed with osseointegration and TKR in 2012–2014. The below-the-knee prosthesis was connected to the tibial base plate of a TKR, enabling the tibial residuum and knee joint to act as weight-sharing structures. A 2-stage procedure involved connecting a standard hinged TKR to custom-made implants and creation of a skin-implant interface. Clinical outcomes were assessed at baseline and after 1–3 years of follow-up using standard measures of health-related quality of life, ambulation, and activity level including the questionnaire for transfemoral amputees (Q-TFA) and the 6-minute walk test. Results — There were no major complications, and there was 1 case of superficial infection. All patients showed improved clinical outcomes, with a Q-TFA improvement range of 29–52 and a 6-minute walk test improvement range of 37–84 meters. Interpretation — It is possible to combine TKR with osseointegrated implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Objectives Joint moments and joint powers during gait are widely used to determine the effects of rehabilitation programs as well as prosthetic fitting. Following the definition of power (dot product of joint moment and joint angular velocity) it has been previously proposed to analyse the 3D angle between both vectors, αMw. Basically, joint power is maximised when both vectors are parallel and cancelled when both vectors are orthogonal. In other words, αMw < 60° reveals a propulsion configuration (more than 50% of the moment contribute to positive power) while αMw > 120° reveals a resistance configuration (more than 50% of the moment contribute to negative power). A stabilisation configuration (less than 50% of the moment contribute to power) corresponds to 60° < αMw < 120°. Previous studies demonstrated that hip joints of able-bodied adults (AB) are mainly in a stabilisation configuration (αMw about 90°) during the stance phase of gait. [1, 2] Individuals with transfemoral amputation (TFA) need to maximise joint power at the hip while controlling the prosthetic knee during stance. Therefore, we tested the hypothesis that TFAs should adopt a strategy that is different from a continuous stabilisation. The objective of this study was to compute joint power and αMw for TFA and to compare them with AB. Methods Three trials of walking at self-selected speed were analysed for 8 TFAs (7 males and 1 female, 46±10 years old, 1.78±0.08 m 82±13 kg) and 8 ABs (males, 25±3 years old, 1.75±0.04, m 67±6 kg). The joint moments are computed from a motion analysis system (Qualisys, Goteborg, Sweden) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee for TFAs and from a motion analysis system (Motion Analysis, Santa Rosa, USA) and force plates (Bertec, Columbus, USA) for ABs. The TFAs were fitted with an OPRA (Integrum, AB, Gothengurg, Sweden) osseointegrated implant system and their prosthetic designs include pneumatic, hydraulic and microprocessor knees. Previous studies showed that the inverse dynamics computed from the multi-axial transducer is the proper method considering the absorption at the foot and resistance at the knee. Results The peak of positive power at loading response (H1) was earlier and lower for TFA compared to AB. Although the joint power is lower, the 3D angle between joint moment and joint angular velocity, αMw, reveals an obvious propulsion configuration (mean αMw about 20°) for TFA compared to a stabilisation configuration (mean αMw about 70°) for AB. The peaks of negative power at midstance (H2) and of positive power at preswing / initial swing (H3) occurred later, lower and longer for TFA compared to AB. Again, the joint powers are lower for TFA but, in this case, αMw is almost comparable (with a time lag), demonstrating a stabilisation (almost a resistance for TFA, mean αMw about 120°) and a propulsion configuration, respectively. The swing phase is not analysed in the present study. Conclusion The analysis of hip joint power may indicate that TFAs demonstrated less propulsion and resistance than ABs during the stance phase of gait. This is true from a quantitative point of view. On the contrary, the 3D angle between joint moment and joint angular velocity, αMw, reveals that TFAs have a remarkable propulsion strategy at loading response and almost a resistance strategy at midstance while ABs adopted a stabilisation strategy. The propulsion configuration, with αMw close to 0°, seems to aim at maximising the positive joint power. The configuration close to resistance, with αMw far from 180°, might aim at unlocking the prosthetic knee before swing while minimising the negative power. This analysis of both joint power and 3D angle between the joint moment and the joint angular velocity provides complementary insights into the gait strategies of TFA that can be used to support evidence-based rehabilitation and fitting of prosthetic components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To strive to improve the rehabilitation program of individuals with transfemoral amputation fitted with bone-anchored prosthesis based on data from direct measurements of the load applied on the residuum we first of all need to understand the load applied on the fixation. Therefore the load applied on the residuum was first directly measured during standardized activities of daily living such as straight line level walking, ascending and descending stairs and a ramp and walking around a circle. From measuring the load in standardized activities of daily living the load was also measured during different phases of the rehabilitation program such as during walking with walking aids and during load bearing exercises.[1-15] The rehabilitation program for individuals with a transfemoral amputation fitted with an OPRA implant relies on a combination of dynamic and static load bearing exercises.[16-20] This presentation will focus on the study of a set of experimental static load bearing exercises. [1] A group of eleven individuals with unilateral transfemoral amputation fitted with an OPRA implant participated in this study. The load on the implant during the static load bearing exercises was measured using a portable system including a commercial transducer embedded in a short pylon, a laptop and a customized software package. This apparatus was previously shown effective in a proof-of-concept study published by Prof. Frossard. [1-9] The analysis of the static load bearing exercises included an analysis of the reliability as well as the loading compliance. The analysis of the loading reliability showed a high reliability between the loading sessions indicating a correct repetition of the LBE by the participants. [1, 5] The analysis of the loading compliance showed a significant lack of axial compliance leading to a systematic underloading of the long axis of the implant during the proposed experimental static LBE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anatomically precontoured plates are commonly used to treat periarticular fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. Recent studies highlighted that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. While it is impossible to design one shape that fits all, it is also burdensome for the manufacturers and hospitals to produce, store and manage multiple plate shapes without the certainty of utilization by a patient population. In this study, we investigated the number of shapes required for maximum fit within a given dataset, and if they could be obtained by manually deforming the original plate. A distal medial tibial plate was automatically positioned on 45 individual tibiae, and the optimal deformation was determined iteratively using finite element analysis simulation. Within the studied dataset, we found that: (i) 89% fit could be achieved with four shapes, (ii) 100% fit was impossible through mechanical deformation, and (iii) the deformations required to obtain the four plate shapes were safe for the stainless steel plate for further clinical use. The proposed framework is easily transferable to other orthopaedic plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total hip replacement is the golden standard treatment for severe osteoarthritis refractory for conservative treatment. Aseptic loosening and osteolysis are the major long-term complications after total hip replacement. Foreign body giant cells and osteoclasts are locally formed around aseptically loosening implants from precursor cells by cell fusion. When the foreign body response is fully developed, it mediates inflammatory and destructive host responses, such as collagen degradation. In the present study, it was hypothesized that the wear debris and foreign body inflammation are the forces driving local osteoclast formation, peri-implant bone resorption and enhanced tissue remodeling. Therefore the object was to characterize the eventual expression and the role of fusion molecules, ADAMs (an abbreviation for A Disintegrin And Metalloproteinase, ADAM9 and ADAM12) in the fusion of progenitor cells into multinuclear giant cells. For generation of such cells, activated macrophages trying to respond to foreign debris play an important role. Matured osteoclasts together with activated macrophages mediate bone destruction by secreting protons and proteinases, including matrix metalloproteinases (MMPs) and cathepsin K. Thus this study also assessed collagen degradation and its relationship to some of the key collagenolytic proteinases in the aggressive synovial membrane-like interface tissue around aseptically loosened hip replacement implants. ADAMs were found in the interface tissues of revision total hip replacement patients. Increased expression of ADAMs at both transcriptional and translational levels was found in synovial membrane-like interface tissue of revision total hip replacement (THR) samples compared with that in primary THR samples. These studies also demonstrate that multinucleate cell formation from monocytes by stimulation with macrophage-colony stimiulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL) is characterized by time dependent changes of the proportion of ADAMs positive cells. This was observed both in the interface membrane in patients and in two different in vitro models. In addition to an already established MCS-F and RANKL driven model, a new virally (parainfluenza 2) driven model (of human salivary adenocarcinoma (HSY) cells or green monkey kidney (GMK) cells) was developed to study various fusion molecules and their role in cell fusion in general. In interface membranes, collagen was highly degraded and collagen degradation significantly correlated with the number of local cells containing collagenolytic enzymes, particularly cathepsin K. As a conclusion, fusion molecules ADAM9 and ADAM12 seem to be dynamically involved in cell-cell fusion processes and multinucleate cell formation. The highly significant correlation between collagen degradation and collagenolytic enzymes, particularly cathepsin K, indicates that the local acidity of the interface membrane in the pathologic bone and soft tissue destruction. This study provides profound knowledge about cell fusion and mechanism responsible for aseptic loosening as well as increases knowledge helpful for prevention and treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue destruction associated with the periodontal disease progression is caused by a cascade of host and microbial factors and proteolytic enzymes. Aberrant laminin-332 (Ln-332), human beta defensin (hBD), and matrix metalloproteinase (MMP) functions have been found in oral inflammatory diseases. The null-allele mouse model appears as the next step in oral disease research. The MMP-8 knock-out mouse model allowed us to clarify the involvement of MMP-8 in vivo in oral and related inflammatory diseases where MMP-8 is suggested to play a key role in tissue destruction. The cleaved Ln-332 γ2-chain species has been implicated in the apical migration of sulcular epithelial cells during the formation of periodontal pockets. We demonstrated that increased Ln-332 fragment levels in gingival crevicular fluid (GCF) are strongly associated with the severity of inflammation in periodontitis. Porphyromonas gingivalis trypsin-like proteinase can cleave an intact Ln-332 γ2-chain into smaller fragments and eventually promote the formation of periodontal pockets. hBDs are components of an innate mucosal defense against pathogenic microbes. Our results suggest that P. gingivalis trypsin-like proteinase can degrade hBD and thus reduce the innate immune response. Elevated levels and the increased activity of MMPs have been detected in several pathological tissue-destructive conditions where MMPs are shown to cleave extracellular matrix (ECM) and basement membrane (BM) molecules and to facilitate tissue destruction. Elevated levels of MMP-8 have been reported in many inflammatory diseases. In periodontitis, MMP-8 levels in gingival crevicular fluid (GCF) and in peri-implant sulcular fluid (PISF) are elevated at sites of active inflammation, and the increased levels of MMP-8 are mainly responsible for collagenase activity, which leads to tissue destruction. MMP-25, expressed by neutrophils, is involved in inflammatory diseases and in ECM turnover. MMP-26 can degrade ECM components and serve as an activator of other MMP enzymes. We further confirmed that increased levels and activation of MMP-8, -25, and -26 in GCF, PISF, and inflamed gingival tissue are associated with the severity of periodontal/peri-implant inflammation. We evaluated the role of MMP-8 in P. gingivalis-induced periodontitis by comparing MMP-8 knock-out (MMP8-/-) and wild-type mice. Surprisingly, MMP-8 significantly attenuated P. gingivalis-induced site-specific alveolar bone loss. We also evaluated systemic changes in serum immunoglobulin and lipoprotein profiles among these mouse groups. P. gingivalis infection increased HDL/VLDL particle size in the MMP-8-/- mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total LPS and IgG antibody levels were enhanced in both mice groups. P. gingivalis-induced periodontitis, especially in MMP-8-/- mice, is associated with severe alveolar bone loss and with systemic inflammatory and lipoprotein changes that are likely to be involved in early atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dentistry, basic imaging techniques such as intraoral and panoramic radiography are in most cases the only imaging techniques required for the detection of pathology. Conventional intraoral radiographs provide images with sufficient information for most dental radiographic needs. Panoramic radiography produces a single image of both jaws, giving an excellent overview of oral hard tissues. Regardless of the technique, plain radiography has only a limited capability in the evaluation of three-dimensional (3D) relationships. Technological advances in radiological imaging have moved from two-dimensional (2D) projection radiography towards digital, 3D and interactive imaging applications. This has been achieved first by the use of conventional computed tomography (CT) and more recently by cone beam CT (CBCT). CBCT is a radiographic imaging method that allows accurate 3D imaging of hard tissues. CBCT has been used for dental and maxillofacial imaging for more than ten years and its availability and use are increasing continuously. However, at present, only best practice guidelines are available for its use, and the need for evidence-based guidelines on the use of CBCT in dentistry is widely recognized. We evaluated (i) retrospectively the use of CBCT in a dental practice, (ii) the accuracy and reproducibility of pre-implant linear measurements in CBCT and multislice CT (MSCT) in a cadaver study, (iii) prospectively the clinical reliability of CBCT as a preoperative imaging method for complicated impacted lower third molars, and (iv) the tissue and effective radiation doses and image quality of dental CBCT scanners in comparison with MSCT scanners in a phantom study. Using CBCT, subjective identification of anatomy and pathology relevant in dental practice can be readily achieved, but dental restorations may cause disturbing artefacts. CBCT examination offered additional radiographic information when compared with intraoral and panoramic radiographs. In terms of the accuracy and reliability of linear measurements in the posterior mandible, CBCT is comparable to MSCT. CBCT is a reliable means of determining the location of the inferior alveolar canal and its relationship to the roots of the lower third molar. CBCT scanners provided adequate image quality for dental and maxillofacial imaging while delivering considerably smaller effective doses to the patient than MSCT. The observed variations in patient dose and image quality emphasize the importance of optimizing the imaging parameters in both CBCT and MSCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix metalloproteinase (MMP) -8, collagenase-2, is a key mediator of irreversible tissue destruction in chronic periodontitis and detectable in gingival crevicular fluid (GCF). MMP-8 mostly originates from neutrophil leukocytes, the first line of defence cells which exist abundantly in GCF, especially in inflammation. MMP-8 is capable of degrading almost all extra-cellular matrix and basement membrane components and is especially efficient against type I collagen. Thus the expression of MMP-8 in GCF could be valuable in monitoring the activity of periodontitis and possibly offers a diagnostic means to predict progression of periodontitis. In this study the value of MMP-8 detection from GCF in monitoring of periodontal health and disease was evaluated with special reference to its ability to differentiate periodontal health and different disease states of the periodontium and to recognise the progression of periodontitis, i.e. active sites. For chair-side detection of MMP-8 from the GCF or peri-implant sulcus fluid (PISF) samples, a dip-stick test based on immunochromatography involving two monoclonal antibodies was developed. The immunoassay for the detection of MMP-8 from GCF was found to be more suitable for monitoring of periodontitis than detection of GCF elastase concentration or activity. Periodontally healthy subjects and individuals suffering of gingivitis or of periodontitis could be differentiated by means of GCF MMP-8 levels and dipstick testing when the positive threshold value of the MMP-8 chair-side test was set at 1000 µg/l. MMP-8 dipstick test results from periodontally healthy and from subjects with gingivitis were mainly negative while periodontitis patients sites with deep pockets ( 5 mm) and which were bleeding on probing were most often test positive. Periodontitis patients GCF MMP-8 levels decreased with hygiene phase periodontal treatment (scaling and root planing, SRP) and even reduced during the three month maintenance phase. A decrease in GCF MMP-8 levels could be monitored with the MMP-8 test. Agreement between the test stick and the quantitative assay was very good (κ = 0.81) and the test provided a baseline sensitivity of 0.83 and specificity of 0.96. During the 12-month longitudinal maintenance phase, periodontitis patients progressing sites (sites with an increase in attachment loss ≥ 2 mm during the maintenance phase) had elevated GCF MMP-8 levels compared with stable sites. General mean MMP-8 concentrations in smokers (S) sites were lower than in non-smokers (NS) sites but in progressing S and NS sites concentrations were at an equal level. Sites with exceptionally and repeatedly elevated MMP-8 concentrations during the maintenance phase were clustered in smoking patients with poor response to SRP (refractory patients). These sites especially were identified by the MMP-8 test. Subgingival plaque samples from periodontitis patients deep periodontal pockets were examined by polymerase chain reaction (PCR) to find out if periodontal lesions may serve as a niche for Chlamydia pneumoniae. Findings were compared with the clinical periodontal parameters and GCF MMP-8 levels to determine the correlation with periodontal status. Traces of C. pneumoniae were identified from one periodontitis patient s pooled subgingival plaque sample by means of PCR. After periodontal treatment (SRP) the sample was negative for C. pneumoniae. Clinical parameters or biomarkers (MMP-8) of the patient with the positive C. pneumoniae finding did not differ from other study patients. In this study it was concluded that MMP-8 concentrations in GCF of sites from periodontally healthy individuals, subjects with gingivitis or with periodontitis are at different levels. The cut-off value of the developed MMP-8 test is at an optimal level to differentiate between these conditions and can possibly be utilised in identification of individuals at the risk of the transition of gingivitis to periodontitis. In periodontitis patients, repeatedly elevated GCF MMP-8 concentrations may indicate sites at risk of progression of periodontitis as well as patients with poor response to conventional periodontal treatment (SRP). This can be monitored by MMP-8 testing. Despite the lower mean GCF MMP-8 concentrations in smokers, a fraction of smokers sites expressed very high MMP-8 concentrations together with enhanced periodontal activity and could be identified with MMP-8 specific chair-side test. Deep periodontal lesions may be niches for non-periodontopathogenic micro-organisms with systemic effects like C. pneumoniae and possibly play a role in the transmission from one subject to another.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strategies that confine antibacterial and/or antifouling property to the surface of the implant, by modifying the surface chemistry and morphology or by encapsulating the material in an antibiotic-loaded coating, are most promising as they do not alter bulk integrity of the material. Among them, plasma-assisted modification and catechol chemistry stand out for their ability to modify a wide range of substrates. By controlling processing parameters, plasma environment can be used for surface nano structuring, chemical activation, and deposition of biologically active and passive coatings. Catechol chemistry can be used for material-independent, highly-controlled surface immobilisation of active molecules and fabrication of biodegradable drug-loaded hydrogel coatings. In this article, we comprehensively review the role plasma-assisted processing and catechol chemistry can play in combating bacterial colonisation on medically relevant coatings, and how these strategies can be coupled with the use of natural antimicrobial agents to produce synthetic antibiotic-free antibacterial surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rising demand for medical implants for ageing populations and ongoing advancements in medical technology continue to drive the use of implantable devices. Higher implant usage has a consequent increased incidence of implant-related infections, and associated prolonged patient care, pain and loss of limb and other organ function. Numerous antibacterial surfaces have been designed that prevent the onset of biofilm formation, thus reducing or preventing implant-associated infections through inhibiting bacterial adhesion or by killing the organisms that successfully attach to the surface of the implant. Other surfaces have been designed to stimulate a local immune response, promoting the natural clearing of the invading pathogen. The desired antibacterial effects are typically achieved by modulating the surface chemistry and morphology of the implant material, by means of the controlled release of pharmacological agents and bioactive compounds from the surface of the material, or by a combination of both processes. An important issue for any type of antibacterial surface modification lies in balancing the non-fouling, bacteriostatic or bactericidal effects against local and systemic biocompatibility. In this chapter, we will first describe the concept of biocompatibility and its evolution, from devices that do not evoke a negative host response to those that actively drive host regeneration. We will then review the challenges associated with merging the need for an implant material to withstand a bacterial load with those associated with supporting function restoration and tissue healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This paper reviews the apparatus used for deformation of bone fracture fixation plates during orthopaedic surgeries including surgical irons, pliers and bending press tools. This paper extends the review to various machineries in non-medical industries and adopts their suitability to clinics-related applications and also covers the evolution of orthopaedic bone plates. This review confirms that none of the studied machineries can be implemented for the deformation of bone fracture fixation plates during orthopaedic surgeries. In addition, this paper also presents the novel apparatus that are designed from scratch for this specific purpose. Several conceptual designs have been proposed and evaluated recently. It has been found that Computer Numerical Control (CNC) systems are not the golden solution to this problem and one needs to attempt to design the robotic arm system. A new design of robotic arm that can be used for facilitating orthopaedic surgeries is being completed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Välikorvaleikkauksiin usein liittyvän välikorvan ja kuuloluuketjun kirurgisen rekonstruktion tavoitteena on luoda olosuhteet, jotka mahdollistavat hyvän kuulon sekä välikorvan säilymisen tulehduksettomana ja ilmapitoisena. Välikorvan rekonstruktiossa on käytetty implanttimateriaaleina perinteisesti potilaan omia kudoksia sekä tarvittaessa erilaisia hajoamattomia biomateriaaleja, mm. titaania ja silikonia. Ongelmana biomateriaalien käytössä voi olla bakteerien adherenssi eli tarttuminen vieraan materiaalin pintaan, mikä saattaa johtaa biofilmin muodostumiseen. Tämä voi aiheuttaa kroonisen, huonosti antibiootteihin reagoivan infektion kudoksessa, mikä usein käytännössä johtaa uusintaleikkaukseen ja implantin poistoon. Maitohappo- ja glykolihappopohjaiset biologisesti hajoavat polymeerit ovat olleet kliinisessä käytössä jo vuosikymmeniä. Niitä on käytetty erityisesti tukimateriaaleina mm. ortopediassa sekä kasvo- ja leukakirurgiassa. Niitä ei ole toistaiseksi käytetty välikorvakirurgiassa. Korvan kuvantamiseen käytetään ensisijaisesti tietokonetomografiaa (TT). TT-tutkimuksen ongelmana on potilaan altistuminen suhteellisen korkealle sädeannokselle, joka kasvaa kumulatiivisesti, jos kuvaus joudutaan toistamaan. Väitöskirjatyö selvittää uuden, aiemmin kliinisessä työssä rutiinisti lähinnä hampaiston ja kasvojen alueen kuvantamiseen käytetyn rajoitetun kartiokeila-TT:n soveltuvuutta korvan alueen kuvantamiseen. Väitöskirjan kahdessa ensimmäisessä osatyössä tutkittiin ja verrattiin kahden kroonisia ja postoperatiivisia korvainfektioita aiheuttavan bakteerin, Staphylococcus aureuksen ja Pseudomonas aeruginosan, in vitro adherenssia titaanin, silikonin ja kahden eri biohajoavan polymeerin (PLGA) pintaan. Lisäksi tutkittiin materiaalien albumiinipinnoituksen vaikutusta adherenssiin. Kolmannessa osatyössä tutkittiin eläinmallissa PLGA:n biokompatibiliteettia eli kudosyhteensopivuutta kokeellisessa välikorvakirurgiassa. Chinchillojen välikorviin istutettiin PLGA-materiaalia, eläimiä seurattiin, ja ne lopetettiin 6 kk:n kuluttua operaatiosta. Biokompatibiliteetin arviointi perustui kliinisiin havaintoihin sekä kudosnäytteisiin. Neljännessä osatyössä tutkittiin kartiokeila-TT:n soveltuvuutta korvan alueen kuvantamiseen vertaamalla sen tarkkuutta perinteisen spiraali-TT:n tarkkuuteen. Molemmilla laitteilla kuvattiin ohimo- eli temporaaliluita korvan alueen kliinisesti ja kirurgisesti tärkeiden rakenteiden kuvantumisen tarkkuuden arvioimiseksi. Viidennessä osatyössä arvioitiin myös operoitujen temporaaliluiden kuvantumista kartiokeila-TT:ssa. Bakteeritutkimuksissa PLGA-materiaalin pintaan tarttui keskimäärin korkeintaan saman verran tai vähemmän bakteereita kuin silikonin tai titaanin. Albumiinipinnoitus vähensi bakteeriadherenssia merkitsevästi kaikilla materiaaleilla. Eläinkokeiden perusteella PLGA todettiin hyvin siedetyksi välikorvassa. Korvakäytävissä tai välikorvissa ei todettu infektioita, tärykalvon perforaatioita tai materiaalin esiin työntymistä. Kudosnäytteissä näkyi lievää tulehdusreaktiota ja fibroosia implantin ympärillä. Temporaaliluutöissä rajoitettu kartiokeila-TT todettiin vähintään yhtä tarkaksi menetelmäksi kuin spiraali-TT välikorvan ja sisäkorvan rakenteiden kuvantamisessa, ja sen aiheuttama kertasäderasitus todettiin spiraali-TT:n vastaavaa huomattavasti vähäisemmäksi. Kartiokeila-TT soveltui hyvin välikorvaimplanttien ja postoperatiivisen korvan kuvantamiseen. Tulokset osoittavat, että PLGA on välikorvakirurgiaan soveltuva, turvallinen ja kudosyhteensopiva biomateriaali. Biomateriaalien pinnoittaminen albumiinilla vähentää merkittävästi bakteeriadherenssia niihin, mikä puoltaa pinnoituksen soveltamista implanttikirurgiassa. Kartiokeila-TT soveltuu korvan alueen kuvantamiseen. Sen tarkkuus kliinisesti tärkeiden rakenteiden osoittamisessa on vähintään yhtä hyvä ja sen potilaalle aiheuttama sädeannos pienempi kuin nykyisen korva-spiraali-TT:n. Tämä tekee menetelmästä spiraali-TT:aa potilasturvallisemman vaihtoehdon erityisesti, jos potilaan tilanne vaatii seurantaa ja useampia kuvauksia, ja jos halutaan kuvata rajoitettuja alueita uni- tai bilateraalisesti.