869 resultados para NETWORK DESIGN PROBLEMS
Resumo:
BACKGROUND: Short-acting agents for neuromuscular block (NMB) require frequent dosing adjustments for individual patient's needs. In this study, we verified a new closed-loop controller for mivacurium dosing in clinical trials. METHODS: Fifteen patients were studied. T1% measured with electromyography was used as input signal for the model-based controller. After induction of propofol/opiate anaesthesia, stabilization of baseline electromyography signal was awaited and a bolus of 0.3 mg kg-1 mivacurium was then administered to facilitate endotracheal intubation. Closed-loop infusion was started thereafter, targeting a neuromuscular block of 90%. Setpoint deviation, the number of manual interventions and surgeon's complaints were recorded. Drug use and its variability between and within patients were evaluated. RESULTS: Median time of closed-loop control for the 11 patients included in the data processing was 135 [89-336] min (median [range]). Four patients had to be excluded because of sensor problems. Mean absolute deviation from setpoint was 1.8 +/- 0.9 T1%. Neither manual interventions nor complaints from the surgeons were recorded. Mean necessary mivacurium infusion rate was 7.0 +/- 2.2 microg kg-1 min-1. Intrapatient variability of mean infusion rates over 30-min interval showed high differences up to a factor of 1.8 between highest and lowest requirement in the same patient. CONCLUSIONS: Neuromuscular block can precisely be controlled with mivacurium using our model-based controller. The amount of mivacurium needed to maintain T1% at defined constant levels differed largely between and within patients. Closed-loop control seems therefore advantageous to automatically maintain neuromuscular block at constant levels.
Resumo:
OBJECTIVE : To describe the methodology and to present the baseline findings of the Attention-deficit/hyperactivity Disorder Observational Research in Europe (ADORE) study, the primary objective of which is to describe the relationship between treatment regimen prescribed and quality of life of children with ADHD in actual practice. METHODS : In this 2-year prospective observational study, data on diagnosis, prescribed treatment and outcomes of ADHD were collected at seven time points by paediatricians and child psychiatrists on 1,573 children recruited in 10 European countries. The data presented here from the 1,478 patients included in the analyses describe the baseline condition, initial treatment regimen prescribed and quality of life of families with children with ADHD. RESULTS : Patients had a mean age of 9.0 years (SD 2.5) and 84% were male. Physicians diagnoses were made using DSM-IV (43 %), ICD-10 (32%) and both DSM-IV and ICD-10 (12 %). Mean age of awareness of a problem was 5.1 years, suggesting an average delay of approximately 4 years between awareness and diagnosis of ADHD. Baseline ADHD rating scale scores (physicianrated) indicated moderate to severe ADHD. Parent-rated SDQ scores were in agreement and suggested significant levels of co-existing problems. CGI-S, CGAS and CHIPCE scores also indicated significant impairment. Patients were offered the following treatments after the initial assessment: pharmacotherapy (25 %), psychotherapy (19 %), combination of pharmacotherapy and psychotherapy (25 %), other therapy (10 %) and no treatment (21 %). CONCLUSION : The ADORE study shows that ADHD is similarly recognised across 10 European countries and that the children are significantly impaired across a wide range of domains. In this respect, they resemble children described in previous ADHD samples.
Resumo:
BACKGROUND: Social isolation is associated with poorer health, and is seen by the World Health Organisation (WHO) as one of the major issues facing the industrialised world. AIM: To explore the significance of social isolation in the older population for GPs and for service commissioners. DESIGN OF STUDY: Secondary analysis of baseline data from a randomised controlled trial of health risk appraisal. SETTING: A total of 2641 community-dwelling, non-disabled people aged 65 years and over in suburban London. METHOD: Demographic details, social network and risk for social isolation based on the 6-item Lubben Social Network Scale, measures of depressed mood, memory problems, numbers of chronic conditions, medication use, functional ability, self-reported use of medical services. RESULTS: More than 15% of the older age group were at risk of social isolation, and this risk increased with advancing age. In bivariate analyses risk of social isolation was associated with older age, education up to 16 years only, depressed mood and impaired memory, perceived fair or poor health, perceived difficulty with both basic and instrumental activities of daily living, diminishing functional ability, and fear of falling. Despite poorer health status, those at risk of social isolation did not appear to make greater use of medical services, nor were they at greater risk of hospital admission. Half of those who scored as at risk of social isolation lived with others. Multivariate analysis showed significant independent associations between risk of social isolation and depressed mood and living alone, and weak associations with male sex, impaired memory and perceived poor health. CONCLUSION: The risk of social isolation is elevated in older men, older persons who live alone, persons with mood or cognitive problems, but is not associated with greater use of services. These findings would not support population screening for individuals at risk of social isolation with a view to averting service use by timely intervention. Awareness of social isolation should trigger further assessment, and consideration of interventions to alleviate social isolation, treat depression or ameliorate cognitive impairment.
Resumo:
Objective To compare the effectiveness and safety of three types of stents (sirolimus eluting, paclitaxel eluting, and bare metal) in people with and without diabetes mellitus. Design Collaborative network meta-analysis. Data sources Electronic databases (Medline, Embase, the Cochrane Central Register of Controlled Trials), relevant websites, reference lists, conference abstracts, reviews, book chapters, and proceedings of advisory panels for the US Food and Drug Administration. Manufacturers and trialists provided additional data. Review methods Network meta-analysis with a mixed treatment comparison method to combine direct within trial comparisons between stents with indirect evidence from other trials while maintaining randomisation. Overall mortality was the primary safety end point, target lesion revascularisation the effectiveness end point. Results 35 trials in 3852 people with diabetes and 10 947 people without diabetes contributed to the analyses. Inconsistency of the network was substantial for overall mortality in people with diabetes and seemed to be related to the duration of dual antiplatelet therapy (P value for interaction 0.02). Restricting the analysis to trials with a duration of dual antiplatelet therapy of six months or more, inconsistency was reduced considerably and hazard ratios for overall mortality were near one for all comparisons in people with diabetes: sirolimus eluting stents compared with bare metal stents 0.88 (95% credibility interval 0.55 to 1.30), paclitaxel eluting stents compared with bare metal stents 0.91 (0.60 to 1.38), and sirolimus eluting stents compared with paclitaxel eluting stents 0.95 (0.63 to 1.43). In people without diabetes, hazard ratios were unaffected by the restriction. Both drug eluting stents were associated with a decrease in revascularisation rates compared with bare metal stents in people both with and without diabetes. Conclusion In trials that specified a duration of dual antiplatelet therapy of six months or more after stent implantation, drug eluting stents seemed safe and effective in people both with and without diabetes.
Resumo:
For the past sixty years, waveguide slot radiator arrays have played a critical role in microwave radar and communication systems. They feature a well-characterized antenna element capable of direct integration into a low-loss feed structure with highly developed and inexpensive manufacturing processes. Waveguide slot radiators comprise some of the highest performance—in terms of side-lobe-level, efficiency, etc. — antenna arrays ever constructed. A wealth of information is available in the open literature regarding design procedures for linearly polarized waveguide slots. By contrast, despite their presence in some of the earliest published reports, little has been presented to date on array designs for circularly polarized (CP) waveguide slots. Moreover, that which has been presented features a classic traveling wave, efficiency-reducing beam tilt. This work proposes a unique CP waveguide slot architecture which mitigates these problems and a thorough design procedure employing widely available, modern computational tools. The proposed array topology features simultaneous dual-CP operation with grating-lobe-free, broadside radiation, high aperture efficiency, and good return loss. A traditional X-Slot CP element is employed with the inclusion of a slow wave structure passive phase shifter to ensure broadside radiation without the need for performance-limiting dielectric loading. It is anticipated this technology will be advantageous for upcoming polarimetric radar and Ka-band SatCom systems. The presented design methodology represents a philosophical shift away from traditional waveguide slot radiator design practices. Rather than providing design curves and/or analytical expressions for equivalent circuit models, simple first-order design rules – generated via parametric studies — are presented with the understanding that device optimization and design will be carried out computationally. A unit-cell, S-parameter based approach provides a sufficient reduction of complexity to permit efficient, accurate device design with attention to realistic, application-specific mechanical tolerances. A transparent, start-to-finish example of the design procedure for a linear sub-array at X-Band is presented. Both unit cell and array performance is calculated via finite element method simulations. Results are confirmed via good agreement with finite difference, time domain calculations. Array performance exhibiting grating-lobe-free, broadside-scanned, dual-CP radiation with better than 20 dB return loss and over 75% aperture efficiency is presented.
Resumo:
A body sensor network solution for personal healthcare under an indoor environment is developed. The system is capable of logging the physiological signals of human beings, tracking the orientations of human body, and monitoring the environmental attributes, which covers all necessary information for the personal healthcare in an indoor environment. The major three chapters of this dissertation contain three subsystems in this work, each corresponding to one subsystem: BioLogger, PAMS and CosNet. Each chapter covers the background and motivation of the subsystem, the related theory, the hardware/software design, and the evaluation of the prototype’s performance.
Resumo:
Tracking or target localization is used in a wide range of important tasks from knowing when your flight will arrive to ensuring your mail is received on time. Tracking provides the location of resources enabling solutions to complex logistical problems. Wireless Sensor Networks (WSN) create new opportunities when applied to tracking, such as more flexible deployment and real-time information. When radar is used as the sensing element in a tracking WSN better results can be obtained; because radar has a comparatively larger range both in distance and angle to other sensors commonly used in WSNs. This allows for less nodes deployed covering larger areas, saving money. In this report I implement a tracking WSN platform similar to what was developed by Lim, Wang, and Terzis. This consists of several sensor nodes each with a radar, a sink node connected to a host PC, and a Matlab© program to fuse sensor data. I have re-implemented their experiment with my WSN platform for tracking a non-cooperative target to verify their results and also run simulations to compare. The results of these tests are discussed and some future improvements are proposed.
Resumo:
Building energy meter network, based on per-appliance monitoring system, willbe an important part of the Advanced Metering Infrastructure. Two key issues exist for designing such networks. One is the network structure to be used. The other is the implementation of the network structure on a large amount of small low power devices, and the maintenance of high quality communication when the devices have electric connection with high voltage AC line. The recent advancement of low-power wireless communication makes itself the right candidate for house and building energy network. Among all kinds of wireless solutions, the low speed but highly reliable 802.15.4 radio has been chosen in this design. While many network-layer solutions have been provided on top of 802.15.4, an IPv6 based method is used in this design. 6LOWPAN is the particular protocol which adapts IP on low power personal network radio. In order to extend the network into building area without, a specific network layer routing mechanism-RPL, is included in this design. The fundamental unit of the building energy monitoring system is a smart wall plug. It is consisted of an electricity energy meter, a RF communication module and a low power CPU. The real challenge for designing such a device is its network firmware. In this design, IPv6 is implemented through Contiki operation system. Customize hardware driver and meter application program have been developed on top of the Contiki OS. Some experiments have been done, in order to prove the network ability of this system.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
In 1906, two American industrialists, John Munroe Longyear and Frederick Ayer, formed the Arctic Coal Company to make the first large scale attempt at mining in the high-Arctic location of Spitsbergen, north of the Norwegian mainland. In doing so, they encountered numerous obstacles and built an organization that attempted to overcome them. The Americans sold out in 1916 but others followed, eventually culminating in the transformation of a largely underdeveloped landscape into a mining region. This work uses John Law’s network approach of the Actor Network Theory (ANT) framework to explain how the Arctic Coal Company built a mining network in this environmentally difficult region and why they made the choices they did. It does so by identifying and analyzing the problems the company encountered and the strategies they used to overcome them by focusing on three major components of the operations; the company’s four land claims, its technical system and its main settlement, Longyear City. Extensive comparison between aspects of Longyear City and the company’s choices of technology with other American examples place analysis of the company in a wider context and helps isolate unique aspects of mining in the high-Arctic. American examples dominate comparative sections because Americans dominated the ownership and upper management of the company.
Resumo:
The developmental processes and functions of an organism are controlled by the genes and the proteins that are derived from these genes. The identification of key genes and the reconstruction of gene networks can provide a model to help us understand the regulatory mechanisms for the initiation and progression of biological processes or functional abnormalities (e.g. diseases) in living organisms. In this dissertation, I have developed statistical methods to identify the genes and transcription factors (TFs) involved in biological processes, constructed their regulatory networks, and also evaluated some existing association methods to find robust methods for coexpression analyses. Two kinds of data sets were used for this work: genotype data and gene expression microarray data. On the basis of these data sets, this dissertation has two major parts, together forming six chapters. The first part deals with developing association methods for rare variants using genotype data (chapter 4 and 5). The second part deals with developing and/or evaluating statistical methods to identify genes and TFs involved in biological processes, and construction of their regulatory networks using gene expression data (chapter 2, 3, and 6). For the first part, I have developed two methods to find the groupwise association of rare variants with given diseases or traits. The first method is based on kernel machine learning and can be applied to both quantitative as well as qualitative traits. Simulation results showed that the proposed method has improved power over the existing weighted sum method (WS) in most settings. The second method uses multiple phenotypes to select a few top significant genes. It then finds the association of each gene with each phenotype while controlling the population stratification by adjusting the data for ancestry using principal components. This method was applied to GAW 17 data and was able to find several disease risk genes. For the second part, I have worked on three problems. First problem involved evaluation of eight gene association methods. A very comprehensive comparison of these methods with further analysis clearly demonstrates the distinct and common performance of these eight gene association methods. For the second problem, an algorithm named the bottom-up graphical Gaussian model was developed to identify the TFs that regulate pathway genes and reconstruct their hierarchical regulatory networks. This algorithm has produced very significant results and it is the first report to produce such hierarchical networks for these pathways. The third problem dealt with developing another algorithm called the top-down graphical Gaussian model that identifies the network governed by a specific TF. The network produced by the algorithm is proven to be of very high accuracy.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.
Resumo:
A green fluorescent 12-aza-epothilone (azathilone) derivative has been prepared through the attachment of the 4-nitro-2,1,3-benzoxadiazole (NBD) fluorophore to the 12-nitrogen atom of the azamacrolide core structure. While less potent than natural epothilones or different N12-acylated azathilone derivatives, NBD-azathilone (3) promotes tubulin assembly, inhibits cancer cell proliferation in vitro and arrests the cell cycle at the G2/M transition. Most significantly, the binding of 3 to cellular microtubules (MTs) could be directly visualized by confocal fluorescence microscopy. Based on competition binding experiments with laulimalide-stabilized MTs in vitro, the N12-Boc substituted azathilone 1, Epo A, and NBD-azathilone (3) all interact with the same tubulin-binding site. Computational studies provided a structural model of the complexes between beta-tubulin and 1 or 3, respectively, in which the NBD moiety of 3 or the BOC moiety of 1 directly and specifically contribute to MT binding. Collectively, these data demonstrate that the cellular effects of 3 and, by inference, also of other azathilones are the result of their interactions with the cellular MT network.