947 resultados para Mycobacterium infections
Resumo:
Multiresistant Staphylococcus aureus constitutes an important public health problem, especially in view of its possible spread in nosocomial environments. In the present work, we analyzed the susceptibility profile of 80 S. aureus stains from human infections resistant to at least 10 drugs. For this study, the techniques used were the disk method and minimum inhibitory concentration (MIC) of the following drugs: cefuroxime, ciprofloxacin, clindamycin, erythromycin, gentamycin, imipenem, oxacillin, rifampicin, tetracycline and vancomycin, according the criteria of the National Committee for Clinical Laboratory Standards (NCCLS). Methicillin was included in the antibiogram as a marker, which is usually used in drugs selection for the treatment of staphylococcal infections. Results indicated that the most effective drug was vancomycin. For the other 10 drugs, the percentage of resistant strains ranged from 85% to 93.75%. In relation to the MICs, it was observed that vancomycin (MIC 90% = 0.615ug/ml) was the most effective drug; followed by rifampicin (MIC 90% = 2.6ug/ml) and ciprofloxacin (MIC 90% = 26.6ug/ml). The drugs that showed the least effective activity were cefuroxime, clindamycin, erythromycin, gentamycin, and oxacillin. On the other hand, observation of β-lactamase production revealed that most of the methicillin-resistant strains produced β-lactamase (83.7%), potentiating the risks of nosocomial infections. In general, vancomycin still continues to be one of the most effective drugs for staphylococcal infections therapy.
Resumo:
The efficacy of BCG vaccine (attenuated Mycobacterium bovis) against pulmonary tuberculosis varies enormously among different populations. The prevailing hypothesis attributes this variation to interactions between the vaccine and mycobacteria common in the environment. Studies have revealed that most protective antigens expressed by the antituberculous vaccine are conserved in M. avium, supporting the hypothesis that exposure to environmental mycobacteria generates a cross-reactive immune response that interferes with BCG efficacy. In this study we investigated the effect of a prior exposure to heat-killed M. avium on the immune response and the protective efficacy induced by a genetic vaccine pVAXhsp65 (hsp65 gene from M. leprae inserted in pVAX vector) against experimental tuberculosis. To evaluate the effect on the immune response, female BALB/c mice were initially injected with distinct doses (0.08×106, 4×106, and 200×10 6) of heat-killed M. avium by subcutaneous route. Three weeks later, the animals were immunized with 3 doses of DNAhsp65 by intramuscular route (100μg/15 days apart). Control groups received only M. avium, vaccine (pVAXhsp65), vector (pVAX) or saline solution. Cytokine production and antibody levels were determined by ELISA. To evaluate the effect on the protective efficacy, animals were initially sensitized with 200×106 heat-killed CFU of M. avium by subcutaneous route and then immunized with 3 doses of pVAXhsp65 (100μg/15 days apart) by intramuscular route. Control groups were injected with saline, pVAX (4 doses), pVAXhsp65 (4 doses), M. avium or M. avium plus pVAX (3 doses). Fifteen days after last DNA dose, the animals were infected with 1×104 viable CFU of H37Rv M. tuberculosis by intratracheal route. Thirty days after challenge, the animals were sacrificed and the bacterial burden was determined by counting the number of CFU in the lungs. Lung histological sections were also analyzed. Splenic cells from primed animals produced more IL-5 but less IFN-gamma than non-primed ones. Also, prior contact with M. avium determined higher production of IgG1 and IgG2a anti-hsp65 antibodies in comparison to control groups. However, this higher immune response did not decrease the bacterial burden in the lungs. In addition, prior sensitization with M. avium decreased the parenchyma preservation observed in the group immunized only with pVaxhsp65. These results indicate that environmental mycobacteria can interfere with immunity and protective efficacy induced by DNAhsp65.
Resumo:
Interleukin-15 (IL-15) is a pleiotropic cytokine which regulates the proliferation, survival and the secretory activities of many distinct cell types in the body. This cytokine is produced by macrophages and many other cell types in response to infectious agents; it controls growth and differentiation of T and B lymphocytes, activation of Natural Killer (NK) and phagocytic cells, and contributes to the homeostasis of the immune system. The present review focuses on the biological and modulatory effects of IL-15 in microbial infections and shows that this cytokine may play a role in the host defense against infections by inducing activation of effector cells from both innate and adaptive immune system.
Resumo:
Mice genetically selected for high (H) and low (L) antibody production (Selection IV-A) were used as murine experimental model. The aim of the present work was to evaluate the macrophagic activity and to characterize the immune response in Mycobacterium bovis-AN5 infected mice (3×10 7 bacteria). The response profile previously observed in such strains was not similar to that obtained during M. bovis infection; however, it corroborated works carried out using Selection I, which is very similar to Selection IV-A regarding infection by M. tuberculosis and Bacillus Calmette-Guérin (BCG). Considering bacterial recovery, LIV-A mice showed higher control of the infectious process in the lungs than in the spleen, whereas HIV-A mice presented more resistance in the spleen. With respect to macrophagic activity, hydrogen peroxide (H2O 2) was probably not involved in the infection control since there was an inhibition in the production of this metabolite. Nitric oxide (NO) and TNF-α production seemed to be important in the control of bacterial replication and varied according to the strain, period and organ. Evaluation of the antibody production indicated that the multi-specific effect commonly observed in these strains was not the same in the response to M. bovis. Antibody concentrations were higher in LIV-A than in HIV-A mice at the beginning of the infection, being similar afterwards. Such data were compared with delayed-type hypersensitivity (DTH), which was more intense in HIV-A than in LIV-A mice, indicating that antibody production is independent of the capability to trigger DTH reactions and that cellular and humoral responses to M. bovis antigens show a polygenic control and an independent quantitative genetic regulation. Differences were observed among organs and metabolites, suggesting that different mechanisms play an important role in this infection in natural heterogeneous populations, indicating that NO, TNF-α and Th1 cytokines are involved in the infection control.
Resumo:
Endodontic infections are mixed aerobic-anaerobic infections and several microbial groups associated to these pathologies are also involved in orofacial infections. The goal of this study was to evaluate the susceptibility of microorganisms isolated from endodontic infections to β-lactams and metronidazole and verify the production of β-lactamases. Clinical specimens were collected from 58 endodontic infections of 52 patients. The microorganisms were isolated in selective and non-selective culture media, under anaerobiosis and aerobiosis, and identified using biochemical methods. In the susceptibility tests, it was used an agar dilution method, and Wilkins-Chalgren agar enriched with blood, hemin and menadione for the anaerobes, while Mueller-Hinton agar was employed for the facultative anaerobes. The production of β-lactamases was evaluated through the biological and chromogenic cephalosporin methods. All tested isolates were sensitive to imipenem and 99.3% to amoxicillin/clavulanate association, while 16.1% showed resistance to amoxicillin and penicillin G, and 4.89% to cefoxitin. Resistance to metronidazole was just found in facultative anaerobes. Production of β-lactamases was detected in 18.2% of the isolates and presented a correlation with resistance to β-lactams.
Resumo:
Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.
Resumo:
To highlight the transmission and major phylogenetic clades of Mycobacterium tuberculosis, a retrospective study was carried out at two health facilities in a small agro-industrial area in São Paulo, Brazil, that has a low tuberculosis incidence rate. IS6110-RFLP and spoligotyping were performed on the isolates, with the former revealing that 31.3% (35/112) of strains were clustered. Epidemiological links were found in 16 of the 35 clustered patients and were associated with transmission among patients living in public housing. Spoligotyping grouped 62.8% of the strains. The T genetic family predominated among the isolates. Of interest is that five strains had a pattern characteristic of African or Asian origin (ST535), and two others were of the rare localized type ST1888 (BRA, VEN). In addition, three new types-1889, 1890, and 1891-were identified. Spoligotyping showed that some ST may be circulating to or from Brazil, and RFLP revealed ongoing transmission in inadequately ventilated public-housing buildings. This may point to a failure in tuberculosis control policy.
Resumo:
Introduction: Urinary tract infection (UTI) is a very common condition in clinical practice, affecting an estimated 50% of all adult women during a lifetime. The most common causative agent is E. coli; UTI may also be caused by S. saprophyticus, Enterobacteria (Klebsiella sp and Serratia sp.), Enterococcus sp., and P aeruginosa. Recurrent UTIs occur at least twice per semester or three times a year. Prophylactic measures to prevent recurrent UTIs include changes in contraception methods, cranberry products, increased fluid intake, urination after intercourse, vaginal estrogen therapy for post-menopausal women, antibiotics, and urinary tract antiseptic agents. Objectives: To evaluate the use of a combination of methenamine and methyl-thioninium chloride in the prophylaxis of recurrent uncomplicated lower UTIs, with respect to: • Signs and symptoms of UTI • Etiologic agent(s) • Recurrence rates • Need for antibiotic therapy in case of recurrence • Incidence of adverse events associated with the treatment, including any reported alterations of laboratory tests Materials & methods: A descriptive, analytic, restrospective study was performed at Hospital Universitário Constantino Otaviano - UNIFESO. Medical charts from patients presenting recurrent uncomplicated lower UTI attended from 2001-present were analyzed, including the following information: Demographic data (age, gender, weight, ethnicity, living conditions): medical history/signs and symptoms of UTI; identification of treatment and dosing regimens; treatment duration; recurrence rates and need for antibiotic therapy in case of recurrence; other medications prescribed; and records of adverse events. Results: E. coli was identified as etiologic agent in 80% of the patients. Following antibiotic therapy, all patients received prophylactic treatment with the combination of methenamine and methylthioninium chloride. Treatment duration ranged from three to six months. Adverse events were observed in 13/60 patients (21.7%). At the end of the respective treatment periods, a statistically significant (p<0.0001) number of patients showed no UTI recurrence. Conclusion: Based on the results from the collected data, we conclude that an orally administered combination of methenamine and methylthioninium chloride is safe and effective in the prophylactic treatment of recurrent uncomplicated lower urinary tract infection. © Copyright Morelra Jr. Editora.
Resumo:
The Mycobacterium tuberculosis cmk gene, predicted to encode a CMP kinase (CMK), was cloned and expressed, and its product was purified to homogeneity. Steady-state kinetics confirmed that M. tuberculosis CMK is a monomer that preferentially phosphorylates CMP and dCMP by a sequential mechanism. A plausible role for CMK is discussed. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
Resumo:
Astroglial cells are the most abundant cells in the mammalian central nervous system, yet our knowledge about their function in bovine Herpesvirus type 5 (BoHV-5) has been limited. The aim of this study was to detect by immunohistochemistry assay the reactive astrocytes for glial fibrilary acidic protein (GFAP) and vimentin (VIM), considered intermediate filaments of the cytoskeleton, localized in olfactory bulb from natural acute cases of BoHV-5 infection. All samples were submitted to virus isolation, real-time polymerase chain reaction (RT-PCR) and in situ hybridization (ISH) technique to confirm the virus transcription and respective genome. Samples were classified into four groups according to the severity of histological lesions. Groups III and IV, which histological lesions were classified as alacia, gliosis, satellitosis, neuronophagia and neuronal necrosis, 35% (± 1.8-2.1) of the inflammatory mononuclear cells, corresponded to CD3 positive lymphocytes. In the same group, 35% (± 1.8) of astrocytes were described as reactive to GFAP and VIM proteins. An agreement of r = 1.0 (P<0.0001) was found between histological lesions, intermediate filaments expression, viral DNA and transcription and CD3 lymphocytes. However, samples with mild histological lesions, 10.8 to 14.2% of astrocytes were classified as reactive to GFAP and VIM filaments. Our findings suggest that GFAP and VIM reactive astrocytes, in primary site of virus replication, seems to play an important role in neurovirulence, in spite of many questions concerning the virus immunopathology remains unclear.
Resumo:
The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: Tuberculosis is a major health problem in São Paulo, Brazil, which is the most populous and one of the most cosmopolitan cities in South America. To characterize the genetic diversity of Mycobacterium tuberculosis in the population of this city, the genotyping techniques of spoligotyping and MIRU were applied to 93 isolates collected in two consecutive years from 93 different tuberculosis patients residing in São Paulo city and attending the Clemente Ferreira Institute (the reference clinic for the treatment of tuberculosis). Findings. Spoligotyping generated 53 different spoligotype patterns. Fifty-one isolates (54.8%) were grouped into 13 spoligotyping clusters. Seventy- two strains (77.4%) showed spoligotypes described in the international databases (SpolDB4, SITVIT), and 21 (22.6%) showed unidentified patterns. The most frequent spoligotype families were Latin American Mediterranean (LAM) (26 isolates), followed by the T family (24 isolates) and Haarlem (H) (11 isolates), which together accounted for 65.4% of all the isolates. These three families represent the major genotypes found in Africa, Central America, South America and Europe. Six Spoligo-International- types (designated SITs by the database) comprised 51.8% (37/72) of all the identified spoligotypes (SIT53, SIT50, SIT42, SIT60, SIT17 and SIT1). Other SITs found in this study indicated the great genetic diversity of M. tuberculosis, reflecting the remarkable ethnic diversity of São Paulo city inhabitants. The MIRU technique was more discriminatory and did not identify any genetic clusters with 100% similarity among the 93 isolates. The allelic analysis showed that MIRU loci 26, 40, 23 and 10 were the most discriminatory. When MIRU and spoligotyping techniques were combined, all isolates grouped in the 13 spoligotyping clusters were separated. Conclusions: Our data indicated the genomic stability of over 50% of spoligotypes identified in São Paulo and the great genetic diversity of M. tuberculosis isolates in the remaining SITs, reflecting the large ethnic mix of the São Paulo city inhabitants. The results also indicated that in this city, M. tuberculosis isolates acquired drug resistance independently of genotype and that resistance was more dependent on the selective pressure of treatment failure and the environmental circumstances of patients. © 2011 Leite et al; licensee BioMed Central Ltd.
Resumo:
New vaccine design techniques have allowed the development of effective vaccine strains against Salmonella infections in which the risks of reversion to the wild type and virulence is null. The mutant strain Salmonella Gallinarum ΔcobSΔcbiA was previously shown to be avirulent in chickens. In this study, this strain was tested as a vaccine against Salmonella Gallinarum (SG) and S. Enteritidis (SE) infections, and its protection levels, safety and possible risks of reversion to virulence after vaccination of layers were evaluated. Birds were vaccinated at five days of age or at five and 25 days of age. At 45 days of age, brown and white layers were challenged with SG and SE wild strains, respectively. Two assays to test the possibility of reversion to virulence were performed. Five successive bacterial passages in brown layers were carried out in the first assay. In the second assay, brown layers received a ten-fold concentrated inoculum of the SGΔcobSΔcbiA strain and were evaluated for clinical signs and mortality. In both experiments, no birds that received the inoculation of the attenuated strain died. Additionally, the use of the mutant strain as a vaccine provided good protection levels against both challenge strains.
Resumo:
The hyacinth macaw (Anodorhynchus hyacinthinus) is the largest species of psittacine birds. It is considered endangered and illegal trade is one of the main factors involved in its decline. In this study, 26 hyacinth macaws maintained under poor husbandry conditions and destined for the illegal trade were confiscated in São Paulo State, Brazil. These birds were evaluated for the presence of antibodies against Chlamydophila psittaci by complement fixation test and C. psittaci DNA by seminested polymerase chain reaction. Results showed that 65.4% of the macaws were positive for at least one test. Birds with subclinical infections can shed chlamydiae intermittently over long periods, contributing to the dissemination of the agent. Global trade is one of the most important drivers of disease emergence. The high percentage of positive samples in this study emphasizes the potential risk that the illegal trade of wild birds represents for both human and animal health. Copyright 2013 by American Association of Zoo Veterinarians.
Resumo:
An uncommon disseminated Mycobacterium tuberculosis infection is described in a 12-year-old female dog presenting with fever, dyspnea, cough, weight loss, lymphadenopathy, melena, epistaxis, and emesis. The dog had a history of close contact with its owner, who died of pulmonary tuberculosis. Radiographic examination revealed diffuse radio-opaque images in both lung lobes, diffuse visible masses in abdominal organs, and hilar and mesenteric lymphadenopathy. Bronchial washing samples and feces were negative for acid-fast organisms. Polymerase chain reaction (PCR)-based species identification of bronchial washing samples, feces, and urine revealed M. tuberculosis using PCR-restriction enzyme pattern analysis-PRA. Because of public health concerns, which were worsened by the physical condition of the dog, euthanasia of the animal was recommended. Rough and tough colonies suggestive of M. tuberculosis were observed after microbiological culture of lung, liver, spleen, heart, and lymph node fragments in Löwenstein-Jensen and Stonebrink media. The PRA analysis enabled diagnosis of M. tuberculosis strains isolated from organs. Copyright © 2013 by The American Society of Tropical Medicine and Hygiene.