977 resultados para Mutation (Biologie)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the gene encoding the endothelin receptor type B (EDNRB) produce congenital aganglionic megacolon and pigment abnormalities in mice and humans. Here we report a naturally occurring null mutation of the EDNRB gene in spotting lethal (sl) rats, which exhibit aganglionic megacolon associated with white coat color. We found a 301-bp deletion spanning the exon 1-intron 1 junction of the EDNRB gene in sl rats. A restriction fragment length polymorphism caused by this deletion perfectly cosegregates with the sl phenotype. The deletion leads to production of an aberrantly spliced EDNRB mRNA that lacks the coding sequence for the first and second putative transmembrane domains of the G-protein-coupled receptor. Radioligand binding assays revealed undetectable levels of functional EDNRB in tissues from homozygous sl/sl rats. We conclude that EDNRB plays an essential role in the normal development of two neural crest-derived cell lineages, epidermal melanocytes and enteric neurons, in three mammalian species--humans, mice, and rats. The EDNRB-deficient rat may also prove valuable in defining the postnatal physiologic role of this receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive reversions of a lac frameshift mutation in Escherichia coli are -1 deletions in small mononucleotide repeats, whereas growth-dependent reversions are heterogeneous. The adaptive mutations resemble instability of simple repeats, which, in hereditary colon cancer, in yeast, and in E. coli occurs in the absence of mismatch repair. The postulate that mismatch repair is disabled transiently during adaptive mutation in E. coli is supported here by the demonstration that the growth-dependent mutation spectrum can be made indistinguishable from adaptive mutations by disallowing mismatch repair during growth. Physiologically induced mismatch repair deficiency could be an important mutagenic mechanism in cancers and in evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found that the somatic mutation rate at the Dlb-1 locus increases exponentially during low daily exposure to ethylnitrosourea over 4 months. This effect, enhanced mutagenesis, was not observed at a lacI transgene in the same tissue, although the two loci respond very similarly to acute doses. Since both mutations are neutral, the mutant frequency was expected to increase linearly with time in response to a constant mutagenic exposure, as it did for lacI. Enhanced mutagenesis does not result from an overall sensitization of the animals, since mice that had first been treated with a low daily dose for 90 days and then challenged with a large acute dose were not sensitized to the acute dose. Nor was the increased mutant frequency due to selection, since animals that were treated for 90 days and then left untreated for up to 60 days showed little change from the 90-day frequency. The effect is substantial: about 8 times as many Dlb-1 mutants were induced between 90 and 120 days as in the first 30 days. This resulted in a reverse dose rate effect such that 90 mg/kg induced more mutants when delivered at 1 mg/kg per day than at 3 mg/kg per day. We postulate that enhanced mutagenesis arises from increased stem cell proliferation and the preferential repair of transcribed genes. Enhanced mutagenesis may be important for risk evaluation, as the results show that chronic exposures can be more mutagenic than acute ones and raise the possibility of synergism between chemicals at low doses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liddle syndrome is a mendelian form of hypertension characterized by constitutively elevated renal Na reabsorption that can result from activating mutations in the beta or gamma subunit of the epithelial Na channel. All reported mutations have deleted the last 45-76 normal amino acids from the cytoplasmic C terminus of one of these channel subunits. While these findings implicate these terminal segments in the normal negative regulation of channel activity, they do not identify the amino acid residues that are critical targets for these mutations. Potential targets include the short highly conserved Pro-rich segments present in the C terminus of beta and gamma subunits; these segments are similar to SH3-binding domains that mediate protein-protein interaction. We now report a kindred with Liddle syndrome in which affected patients have a mutation in codon 616 of the beta subunit resulting in substitution of a Leu for one of these highly conserved Pro residues. The functional significance of this mutation is demonstrated both by the finding that this is a de novo mutation appearing concordantly with the appearance of Liddle syndrome in the kindred and also by the marked activation of amiloride-sensitive Na channel activity seen in Xenopus oocytes expressing channels containing this mutant subunit (8.8-fold increase compared with control oocytes expressing normal channel subunits; P = 0.003). These findings demonstrate a de novo missense mutation causing Liddle syndrome and identify a critical channel residue important for the normal regulation of Na reabsorption in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the in vivo role(s) of type I interferons (IFNs) and to determine the role of a component of the type I IFN receptor (IFNAR1) in mediating responses to these IFNs, we generated mice with a null mutation (-/-) in the IFNAR1 gene. Despite compelling evidence for modulation of cell proliferation and differentiation by type I IFNs, there were no gross signs of abnormal fetal development or morphological changes in adult IFNAR1-/- mice. However, abnormalities of hemopoietic cells were detected in IFNAR1 -/- mice. Elevated levels of myeloid lineage cells were detected in peripheral blood and bone marrow by staining with Mac-1 and Gr-1 antibodies. Furthermore, bone marrow macrophages from IFNAR1 -/- mice showed abnormal responses to colony-stimulating factor 1 and lipopolysaccharide. IFNAR1 -/- mice were highly susceptible to viral infection: viral titers were undetected 24 hr after infection of IFNAR1 +/+ mice but were extremely high in organs of IFNAR1 -/- mice, demonstrating that the type I IFN system is a major acute antiviral defence. In cell lines derived from IFNAR1 -/- mice, there was no signaling in response to IFN-alpha or -beta as measured by induction of 2'-5' oligoadenylate synthetase, antiviral, or antiproliferative responses. Importantly, these studies demonstrate that type I IFNs function in the development and responses of myeloid lineage cells, particularly macrophages, and that the IFNAR1 receptor component is essential for antiproliferative and antiviral responses to IFN-alpha and -beta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RII beta regulatory subunit of cAMP-dependent protein kinase (PKA) contains an autophosphorylation site and a nuclear location signal, KKRK. We approached the structure-function analysis of RII beta by using site-directed mutagenesis. Ser114 (the autophosphorylation site) of human RII beta was replaced with Ala (RII beta-P) or Arg264 of KKRK was replaced with Met (RII beta-K). ras-transformed NIH 3T3 (DT) cells were transfected with expression vectors for RII beta, RII beta-P, and RII beta-K, and the effects on PKA isozyme distribution and transformation properties were analyzed. DT cells contained PKA-I and PKA-II isozymes in a 1:2 ratio. Over-expression of wild-type or mutant RII beta resulted in an increase in PKA-II and the elimination of PKA-I. Only wild-type RII beta cells demonstrated inhibition of both anchorage-dependent and -independent growth and phenotypic change. The growth inhibitory effect of RII beta overexpression was not due to suppression of ras expression but was correlated with nuclear accumulation of RII beta. DT cells demonstrated growth inhibition and phenotypic change upon treatment with 8-Cl-cAMP. RII beta-P or RII beta-K cells failed to respond to 8-Cl-cAMP. These data suggest that autophosphorylation and nuclear location signal sequences are integral parts of the growth regulatory mechanism of RII beta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a recessive mutation, immune deficiency (imd), that impairs the inducibility of all genes encoding antibacterial peptides during the immune response of Drosophila. When challenged with bacteria, flies carrying this mutation show a lower survival rate than wild-type flies. We also report that, in contrast to the antibacterial peptides, the antifungal peptide drosomycin remains inducible in a homozygous imd mutant background. These results point to the existence of two different pathways leading to the expression of two types of target genes, encoding either the antibacterial peptides or the antifungal peptide drosomycin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene targeting was used to create mice with a null mutation of the gene encoding the common beta subunit (beta C) of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3; multi-CSF), and interleukin 5 (IL-5) receptor complexes (beta C-/- mice). High-affinity binding of GM-CSF was abolished in beta C-/- bone marrow cells, while cells from heterozygous animals (beta C+/- mice) showed an intermediate number of high-affinity receptors. Binding of IL-3 was unaffected, confirming that the IL-3-specific beta chain remained intact. Eosinophil numbers in peripheral blood and bone marrow of beta C-/- animals were reduced, while other hematological parameters were normal. In clonal cultures of beta C-/- bone marrow cells, even high concentrations of GM-CSF and IL-5 failed to stimulate colony formation, but the cells exhibited normal quantitative responsiveness to stimulation by IL-3 and other growth factors. beta C-/- mice exhibited normal development and survived to young adult life, although they developed pulmonary peribronchovascular lymphoid infiltrates and areas resembling alveolar proteinosis. There was no detectable difference in the systemic clearance and distribution of GM-CSF between beta C-/- and wild-type littermates. The data establish that beta C is normally limiting for high-affinity binding of GM-CSF and demonstrate that systemic clearance of GM-CSF is not mediated via such high-affinity receptor complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated channel proteins sense a change in the transmembrane electric field and respond with a conformational change that allows ions to diffuse across the pore-forming structure. Site-specific mutagenesis combined with electrophysiological analysis of expressed mutants in amphibian oocytes has previously established the S4 transmembrane segment as an element of the voltage sensor. Here, we show that mutations of conserved negatively charged residues in S2 and S3 of a brain K+ channel, thought of as countercharges for the positively charged residues in S4, selectively modulate channel gating without modifying the permeation properties. Mutations of Glu235 in S2 that neutralize or reverse charge increase the probability of channel opening and the apparent gating valence. In contrast, replacements of Glu272 by Arg or Thr268 by Asp in S3 decrease the open probability and the apparent gating valence. Residue Glu225 in S2 tolerated replacement only by acidic residues, whereas Asp258 in S3 was intolerant to any attempted change. These results imply that S2 and S3 are unlikely to be involved in channel lining, yet, together with S4, may be additional components of the voltage-sensing structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear that many organisms possess the ability to regulate their mutation rate in response to environmental conditions. So the question of finding an optimal mutation rate must be replaced by that of finding an optimal mutation schedule. We show that this task cannot be accomplished with standard population-dynamic models. We then develop a "hybrid" model for populations experiencing time-dependent mutation that treats population growth as deterministic but the time of first appearance of new variants as stochastic. We show that the hybrid model agrees well with a Monte Carlo simulation. From this model, we derive a deterministic approximation, a "threshold" model, that is similar to standard population dynamic models but differs in the initial rate of generation of new mutants. We use these techniques to model antibody affinity maturation by somatic hypermutation. We had previously shown that the optimal mutation schedule for the deterministic threshold model is phasic, with periods of mutation between intervals of mutation-free growth. To establish the validity of this schedule, we now show that the phasic schedule that optimizes the deterministic threshold model significantly improves upon the best constant-rate schedule for the hybrid and Monte Carlo models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional myosin II is an essential protein for cytokinesis, capping of cell surface receptors, and development of Dictyostelium cells. Myosin II also plays an important role in the polarization and movement of cells. All conventional myosins are double-headed molecules but the significance of this structure is not understood since single-headed myosin II can produce movement and force in vitro. We found that expression of the tail portion of myosin II in Dictyostelium led to the formation of single-headed myosin II in vivo. The resultant cells contain an approximately equal ratio of double- and single-headed myosin II molecules. Surprisingly, these cells were completely blocked in cytokinesis and capping of concanavalin A receptors although development into fruiting bodies was not impaired. We found that this phenotype is not due to defects in myosin light chain phosphorylation. These results show that single-headed myosin II cannot function properly in vivo and that it acts as a dominant negative mutation for myosin II function. These results suggest the possibility that cooperativity of myosin II heads is critical for force production in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Escherichia coli DNA polymerase (Pol) II in producing or avoiding mutations was investigated by replacing the chromosomal Pol II gene (polB+) by a gene encoding an exonuclease-deficient mutant Pol II (polBex1). The polBex1 allele increased adaptive mutations on an episome in nondividing cells under lactose selection. The presence of a Pol III antimutator allele (dnaE915) reduced adaptive mutations in both polB+ cells and cells deleted for polB (polB delta 1) to below the wild-type level, suggesting that both Pol II and Pol III are synthesizing episomal DNA in nondividing cells but that in wild-type cells Pol III generates the adaptive mutations. The adaptive mutations were mainly -1 frame-shifts occurring in short homopolymeric runs and were similar in wild-type, polB delta 1, and polBex1 strains. Mutations produced by both Pol III and Pol II ex1 were corrected by the mutHLS mismatch repair system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis continues to be responsible for the deaths of millions of people, yet the virulence factors of the causative pathogens remain unknown. Genetic complementation experiments with strains of the Mycobacterium tuberculosis complex have identified a gene from a virulent strain that restores virulence to an attenuated strain. The gene, designated rpoV, has a high degree of homology with principal transcription or sigma factors from other bacteria, particularly Mycobacterium smegmatis and Streptomyces griseus. The homologous rpoV gene of the attenuated strain has a point mutation causing an arginine-->histidine change in a domain known to interact with promoters. To our knowledge, association of loss of bacterial virulence with a mutation in the principal sigma factor has not been previously reported. The results indicate either that tuberculosis organisms have an alternative principal sigma factor that promotes virulence genes or, more probably, that this particular mutant principal sigma factor is unable to promote expression of one or more genes required for virulence. Study of genes and proteins differentially regulated by the mutant transcription factor should facilitate identification of further virulence factors.