893 resultados para Musculoskeletal ultrasound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of ultrasound on improving the performance of a granular iron Permeable Reactive Barrier (PRB) in the degradation of Trichloroethylene (TCE) was evaluated. Two treatment columns made of clear Plexiglas with a height of 1ft and a diameter of 2 inches and filled with granular iron were used. One was fitted with 25Khz ultrasound probes. A solution of TCE was run through at constant flow rate. Samples obtained from the column at different residence times before and after sonication were analyzed for concentrations of TCE and used to generate concentration profiles to obtain rate constants, which were compared. An improvement of 23.4% in the reaction rate of TCE degradation was observed after sonication of the iron media suggesting that ultrasound may contribute to improving the performance of PRBs in the degradation of TCE in contaminated groundwater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims To investigate the predictive ability of four digital assessment parameters to detect levator ani (LA) muscle defects (avulsion injury) and compare these to transperineal tomographic ultrasound images. Methods This was an observational study imbedded in a larger quasi-experimental cohort study for women with urinary incontinence. Seventy-two women, ≥60 years who had attended or were going to attend physiotherapy for treatment of urinary incontinence, were included in the study. Inclusion criteria from the parent study were symptoms of stress, urge or both types of urinary incontinence. The predictive ability of the following digital parameters: direct palpation of a discontinuity of the LA muscle from insertion on the pubic ramus; palpation of the distance between the muscle insertion sites; palpation of LA strength; palpation of LA tone, were analyzed against findings from tomographic transperineal ultrasound images. Correlation between methods was measured using Cohen's kappa for each of the individual parameters. Results Seventeen women (24%) presented with a complete or partial avulsion of the puborectalis muscle as diagnosed with tomographic ultrasound imaging. Nine women (13%) had complete avulsions, one of which was bilateral. The predictive ability of the digital assessment parameters varied from poor (k = 0.187, 95% CI [0.02–0.36]) to moderate (k = 0.569, 95% CI [0.31–0.83]). The new parameter of ‘width between insertion sites’ performed best. Conclusions Adding the parameter of “width between insertion sites” appears to enhance our ability to detect avulsion of the levator ani (LA) muscle by digital examination however it does not distinguish between unilateral or bilateral avulsion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dancers of all forms often engage in aesthetic yet challenging movements. Their training, choreography, and performances require strength, stamina, flexibility, grace, passion, and emotion. Ballet and Bharatanatyam (an Indian classical dance form) dancers utilize two movements in each of their dance forms that are similar—a half-sitting pose and a full-sitting pose, both requiring external rotation of the legs and bending at the knee joints. The purpose of this study was to examine and compare the biomechanics of joint reaction forces and knee angles in both styles of dance for these particular poses. The study included nine female ballet dancers and seven female Bharatanatyam dancers. Hamstring and gastrocnemius flexibility were measured for each dancer. Knee angles, vertical peak forces, and moments were determined for dancers at the lowest point of their bending positions. Mann-Whitney U tests found significant differences in hamstring flexibility, right gastrocnemius flexibility, and knee angles for the full-sitting poses between ballet and Bharatanatyam dancers. No significant difference was found in the vertical peak forces as a ratio to total body weight and moments between the two styles of dance. Further research can be done to more directly assess a difference in injury risk between the ballet and Bharatanatyam dancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims To investigate the predictive ability of four digital assessment parameters to detect levator ani (LA) muscle defects (avulsion injury) and compare these to transperineal tomographic ultrasound images. Methods This was an observational study imbedded in a larger quasi-experimental cohort study for women with urinary incontinence. Seventy-two women, ≥60 years who had attended or were going to attend physiotherapy for treatment of urinary incontinence, were included in the study. Inclusion criteria from the parent study were symptoms of stress, urge or both types of urinary incontinence. The predictive ability of the following digital parameters: direct palpation of a discontinuity of the LA muscle from insertion on the pubic ramus; palpation of the distance between the muscle insertion sites; palpation of LA strength; palpation of LA tone, were analyzed against findings from tomographic transperineal ultrasound images. Correlation between methods was measured using Cohen's kappa for each of the individual parameters. Results Seventeen women (24%) presented with a complete or partial avulsion of the puborectalis muscle as diagnosed with tomographic ultrasound imaging. Nine women (13%) had complete avulsions, one of which was bilateral. The predictive ability of the digital assessment parameters varied from poor (k = 0.187, 95% CI [0.02–0.36]) to moderate (k = 0.569, 95% CI [0.31–0.83]). The new parameter of ‘width between insertion sites’ performed best. Conclusions Adding the parameter of “width between insertion sites” appears to enhance our ability to detect avulsion of the levator ani (LA) muscle by digital examination however it does not distinguish between unilateral or bilateral avulsion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit  beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit  beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient  digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the  modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP  modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of  modulators topologies, is intended to accelerate the design process and evaluation of  modulators. This design tool is further developed to enable the design, analysis and evaluation of  beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such as stroke volume, ejection fraction, and cardiac output. By repeating the measurements from a subject after a brief exercise period, an increase in stroke volume and ejection fraction are easily demonstrable, potentially with or without an increase in left ventricular end-diastolic volume (which indicates preload). Thus, factors that affect cardiac performance can readily be discussed. This activity may be performed as a practical demonstration and visualized using an overhead projector or networked computers, concentrating on using the ultrasound images to teach basic physiological principles. This has proved to be highly popular with students, who reported a significant improvement in their understanding of Frank-Starling's law of the heart with ultrasound imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SYSTEMATIC REVIEW AND META-ANALYSIS: EFFECTS OF WALKING EXERCISE IN CHRONIC MUSCULOSKELETAL PAIN O'Connor S.R.1, Tully M.A.2, Ryan B.3, Baxter D.G.3, Bradley J.M.1, McDonough S.M.11University of Ulster, Health & Rehabilitation Sciences Research Institute, Newtownabbey, United Kingdom, 2Queen's University, UKCRC Centre of Excellence for Public Health (NI), Belfast, United Kingdom, 3University of Otago, Centre for Physiotherapy Research, Dunedin, New ZealandPurpose: To examine the effects of walking exercise on pain and self-reported function in adults with chronic musculoskeletal pain.Relevance: Chronic musculoskeletal pain is a major cause of morbidity, exerting a substantial influence on long-term health status and overall quality of life. Current treatment recommendations advocate various aerobic exercise interventions for such conditions. Walking may represent an ideal form of exercise due to its relatively low impact. However, there is currently limited evidence for its effectiveness.Participants: Not applicable.Methods: A comprehensive search strategy was undertaken by two independent reviewers according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the recommendations of the Cochrane Musculoskeletal Review Group. Six electronic databases (Medline, CINAHL, PsychINFO, PEDro, Sport DISCUS and the Cochrane Central Register of Controlled Trials) were searched for relevant papers published up to January 2010 using MeSH terms. All randomised or non-randomised studies published in full were considered for inclusion. Studies were required to include adults aged 18 years or over with a diagnosis of chronic low back pain, osteoarthritis or fibromyalgia. Studies were excluded if they involved peri-operative or post-operative interventions or did not include a comparative, non exercise or non-walking exercise control group. The U.S. Preventative Services Task Force system was used to assess methodological quality. Data for pain and self-reported function were extracted and converted to a score out of 100.Analysis: Data were pooled and analyzed using RevMan (v.5.0.24). Statistical heterogeneity was assessed using the X2 and I2 test statistics. A random effects model was used to calculate the mean differences and 95% CIs. Data were analyzed by length of final follow-up which was categorized as short (≤8 weeks post randomisation), mid (2-12 months) or long-term (>12 months).Results: A total of 4324 articles were identified and twenty studies (1852 participants) meeting the inclusion criteria were included in the review. Overall, studies were judged to be of at least fair methodological quality. The most common sources of likely bias were identified as lack of concealed allocation and failure to adequately address incomplete data. Data from 12 studies were suitable for meta-analysis. Walking led to reductions in pain at short (<8 weeks post randomisation) (-8.44 [-14.54, -2.33]) and mid-term (>8 weeks - 12 month) follow-up (-9.28 [-16.34, -2.22]). No effect was observed for long-term (>12 month) data (-2.49 [-7.62, 2.65]). For function, between group differences were observed for short (-11.57 [-16.06, -7.08]) and mid-term data (-13.26 [-16.91, -9.62]). A smaller effect was also observed at long-term follow-up (-5.60 [-7.70, -3.50]).Conclusions: Walking interventions were associated with statistically significant improvements in pain and function at short and mid-term follow-up. Long-term data were limited but indicated that these effects do not appear to be maintained beyond twelve months.Implications: Walking may be an effective form of exercise for individuals with chronic musculoskeletal pain. However, further research is required which examines longer term follow-up and dose-response issues in this population.Key-words: 1. Walking exercise 2. Musculoskeletal pain 3. Systematic reviewFunding acknowledgements: Department of Employment and Learning, Northern Ireland.Ethics approval: Not applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Point-of-care ultrasound (POCUS) use in clinical care is growing rapidly, and advocates have recently proposed the integration of ultrasound into undergraduate medical education (UME). The evidentiary basis for this integration has not been evaluated critically or systematically. In this study, we conducted a critical and systematic review framed by the rationales enumerated by advocates of ultrasound in UME in academic publications.

Methods: This research was conducted in two phases. First, the dominant discursive rationales for the integration of ultrasound in UME were identified using techniques from Foucauldian critical discourse analysis (CDA) from an archive of 403 academic publications. We then sought empirical evidence in support of theses rationales, using a critical synthesis methodology also adapted from CDA.

Results: We identified four dominant discursive rationales, with different levels of evidentiary support. Ultrasound was not demonstrated to improve students’ understanding of anatomy. The benefit of ultrasound in teaching physical examination was inconsistent,and rests on minimal evidence. With POCUS, students’ diagnostic accuracy was improved for certain pathologies, but findings were inconsistent for others. Finally, the rationale that ultrasound training in UME will improve quality of patient care was difficult to evaluate.

Discussion: Our analysis has shown that the frequently repeated rationales for the integration of ultrasound in UME are not supported by a sufficient base of empirical research. The repetition of these dominant discursive rationales in academic publications legitimizes them and may preclude further primary research. Since the value of clinical ultrasound use by medical students remains unproven, educators must consider whether the associated financial and temporal costs are justified or whether more research is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. The simulation method is explained in detail. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling. Despite this unrealistic behavior the error maybe small enough to be accepted for specific applications. These results is a starting point start for achieving better results of inverse musculoskeletal simulations from a numerical point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world health organization defines musculoskeletal disorder (MSD) as “a disorder of muscles, tendons, peripheral vascular system not directly resulting from an acute or instantaneous event.1 Work related MSDs are one of the most important occupational hazards.1 Among many other occupations, dentistry is a highly demanding profession that requires good visual acuity, hearing, depth perception, psychomotor skills, manual dexterity, and ability to maintain occupational postures over long periods.