985 resultados para Multiple Programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS). Intriguingly, glutamate level in plasma and cerebrospinal fluid of MS patients is elevated, a feature which may be related to the pathophysiology of this disease. In addition to glutamate transporters, levels of extracellular glutamate are controlled by cystine/glutamate antiporter x(c)(-), an exchanger that provides intracellular cystine for production of glutathione, the major cellular antioxidant. The objective of this study was to analyze the role of the system x(c)(-) in glutamate homeostasis alterations in MS pathology. -- Methods: Primary cultures of human monocytes and the cell line U-937 were used to investigate the mechanism of glutamate release. Expression of cystine glutamate exchanger (xCT) was quantified by quantitative PCR, Western blot, flow cytometry and immunohistochemistry in monocytes in vitro, in animals with experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and in samples of MS patients. -- Results and discussion: We show here that human activated monocytes release glutamate through cystine/glutamate antiporter x(c)(-) and that the expression of the catalytic subunit xCT is upregulated as a consequence of monocyte activation. In addition, xCT expression is also increased in EAE and in the disease proper. In the later, high expression of xCT occurs both in the central nervous system (CNS) and in peripheral blood cells. In particular, cells from monocyte-macrophage-microglia lineage have higher xCT expression in MS and in EAE, indicating that immune activation upregulates xCT levels, which may result in higher glutamate release and contribution to excitotoxic damage to oligodendrocytes. -- Conclusions: Together, these results reveal that increased expression of the cystine/glutamate antiporter system x(c)(-) in MS provides a link between inflammation and excitotoxicity in demyelinating diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Carr Lake Project aims to convert Carr Lake’s 450 acres of agriculture fields into a regional multi-use park that will benefit flood protection, water quality, and wildlife habitat, while also providing additional recreational areas for the local community. The Project is represented by an informal consortium of interested parties including the Watershed Institute of California State University Monterey Bay, The City of Salinas, 1000 Friends of Carr Lake, and the Big Sur Land Trust. (Document contains 54 pages)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different spatial levels are involved concerning damage accumulation to eventual failure. nucleation and growth rates of microdamage nN* and V*. It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, two independent dimensionless numbers: the trans-scale one * * ( V*)including the * **5 * N c V including mesoscopic parameters only, play the key role in the process of damage accumulation to failure. The above implies that there are three time scales involved in the process: the macroscopic imposed time scale tim = /a and two meso-scopic time scales, nucleation and growth of damage, (* *4) N N t =1 n c and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the ratio of microdamage growth time scale over the macroscopically imposed time scale. So, analogous to the definition of Deborah number as the ratio of relaxation time over external one in rheology. Let De be the imposed Deborah number while De represents the competition and coupling between the microdamage growth and the macroscopically imposed wave loading. In stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be the predominate mechanism governing the failure. Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic mesoscopic time scales: growth over nucleation. Similarly let D be the “intrinsic Deborah number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Furthermore, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is derived that D* is a proper indicator of macroscopic critical damage to damage localization, like D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah number D* indicates the energy partition of microdamage dissipation over bulk plastic work. This explains why spallation can not be formulated by macroscopic energy criterion and must be treated by multi-scale analysis.

Relevância:

20.00% 20.00%

Publicador: