883 resultados para Multimodal retrieval
Resumo:
Continuing advances in digital image capture and storage are resulting in a proliferation of imagery and associated problems of information overload in image domains. In this work we present a framework that supports image management using an interactive approach that captures and reuses task-based contextual information. Our framework models the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. During image analysis, interactions are captured and a task context is dynamically constructed so that human expertise, proficiency and knowledge can be leveraged to support other users in carrying out similar domain tasks using case-based reasoning techniques. In this article we present our framework for capturing task context and describe how we have implemented the framework as two image retrieval applications in the geo-spatial and medical domains. We present an evaluation that tests the efficiency of our algorithms for retrieving image context information and the effectiveness of the framework for carrying out goal-directed image tasks. © 2010 Springer Science+Business Media, LLC.
Resumo:
In April 2009, Google Images added a filter for narrowing search results by colour. Several other systems for searching image databases by colour were also released around this time. These colour-based image retrieval systems enable users to search image databases either by selecting colours from a graphical palette (i.e., query-by-colour), by drawing a representation of the colour layout sought (i.e., query-by-sketch), or both. It was comments left by readers of online articles describing these colour-based image retrieval systems that provided us with the inspiration for this research. We were surprised to learn that the underlying query-based technology used in colour-based image retrieval systems today remains remarkably similar to that of systems developed nearly two decades ago. Discovering this ageing retrieval approach, as well as uncovering a large user demographic requiring image search by colour, made us eager to research more effective approaches for colour-based image retrieval. In this thesis, we detail two user studies designed to compare the effectiveness of systems adopting similarity-based visualisations, query-based approaches, or a combination of both, for colour-based image retrieval. In contrast to query-based approaches, similarity-based visualisations display and arrange database images so that images with similar content are located closer together on screen than images with dissimilar content. This removes the need for queries, as users can instead visually explore the database using interactive navigation tools to retrieve images from the database. As we found existing evaluation approaches to be unreliable, we describe how we assessed and compared systems adopting similarity-based visualisations, query-based approaches, or both, meaningfully and systematically using our Mosaic Test - a user-based evaluation approach in which evaluation study participants complete an image mosaic of a predetermined target image using the colour-based image retrieval system under evaluation.
Resumo:
Motion is an important aspect of face perception that has been largely neglected to date. Many of the established findings are based on studies that use static facial images, which do not reflect the unique temporal dynamics available from seeing a moving face. In the present thesis a set of naturalistic dynamic facial emotional expressions was purposely created and used to investigate the neural structures involved in the perception of dynamic facial expressions of emotion, with both functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG). Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend the distributed neural system for face perception (Haxby et al.,2000). Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as inferior occipital gyri and superior temporal sulci, along with coupling between superior temporal sulci and amygdalae, as well as with inferior frontal gyri. MEG and Synthetic Aperture Magnetometry (SAM) were used to examine the spatiotemporal profile of neurophysiological activity within this dynamic face perception network. SAM analysis revealed a number of regions showing differential activation to dynamic versus static faces in the distributed face network, characterised by decreases in cortical oscillatory power in the beta band, which were spatially coincident with those regions that were previously identified with fMRI. These findings support the presence of a distributed network of cortical regions that mediate the perception of dynamic facial expressions, with the fMRI data providing information on the spatial co-ordinates paralleled by the MEG data, which indicate the temporal dynamics within this network. This integrated multimodal approach offers both excellent spatial and temporal resolution, thereby providing an opportunity to explore dynamic brain activity and connectivity during face processing.
Resumo:
The studies in this project have investigated the ongoing neuronal network oscillatory activity found in the sensorimotor cortex using two modalities: magnetoencephalography (MEG) and in vitro slice recordings. The results have established that ongoing sensorimotor oscillations span the mu and beta frequency region both in vitro and in MEG recordings, with distinct frequency profiles for each recorded laminae in vitro, while MI and SI show less difference in humans. In addition, these studies show that connections between MI and SI modulate the ongoing neuronal network activity in these areas. The stimulation studies indicate that specific frequencies of stimulation affect the ongoing activity in the sensorimotor cortex. The continuous theta burst stimulation (cTBS) study demonstrates that cTBS predominantly enhances the power of the local ongoing activity. The stimulation studies in this project show limited comparison between modalities, which is informative of the role of connectivity in these effects. However, independently these studies provide novel information on the mechanisms on sensorimotor oscillatory interaction. The pharmacological studies reveal that GABAergic modulation with zolpidem changes the neuronal oscillatory network activity in both healthy and pathological MI. Zolpidem enhances the power of ongoing oscillatory activity in both sensorimotor laminae and in healthy subjects. In contrast, zolpidem attenuates the “abnormal” beta oscillatory activity in the affected hemisphere in Parkinsonian patients, while restoring the hemispheric beta power ratio and frequency variability and thereby improving motor symptomatology. Finally we show that independent signals from MI laminae can be integrated in silico to resemble the aggregate MEG MI oscillatory signals. This highlights the usefulness of combining these two methods when elucidating neuronal network oscillations in the sensorimotor cortex and any interventions.
Resumo:
A variety of content-based image retrieval systems exist which enable users to perform image retrieval based on colour content - i.e., colour-based image retrieval. For the production of media for use in television and film, colour-based image retrieval is useful for retrieving specifically coloured animations, graphics or videos from large databases (by comparing user queries to the colour content of extracted key frames). It is also useful to graphic artists creating realistic computer-generated imagery (CGI). Unfortunately, current methods for evaluating colour-based image retrieval systems have 2 major drawbacks. Firstly, the relevance of images retrieved during the task cannot be measured reliably. Secondly, existing methods do not account for the creative design activity known as reflection-in-action. Consequently, the development and application of novel and potentially more effective colour-based image retrieval approaches, better supporting the large number of users creating media for use in television and film productions, is not possible as their efficacy cannot be reliably measured and compared to existing technologies. As a solution to the problem, this paper introduces the Mosaic Test. The Mosaic Test is a user-based evaluation approach in which participants complete an image mosaic of a predetermined target image, using the colour-based image retrieval system that is being evaluated. In this paper, we introduce the Mosaic Test and report on a user evaluation. The findings of the study reveal that the Mosaic Test overcomes the 2 major drawbacks associated with existing evaluation methods and does not require expert participants. © 2012 Springer Science+Business Media, LLC.
A multimodal perspective on the composition of cortical oscillations:frontiers in human neuroscience
Resumo:
An expanding corpus of research details the relationship between functional magnetic resonance imaging (fMRI) measures and neuronal network oscillations. Typically, integratedelectroencephalography(EEG) and fMRI,orparallel magnetoencephalography (MEG) and fMRI are used to draw inference about the consanguinity of BOLD and electrical measurements. However, there is a relative dearth of information about the relationship between E/MEG and the focal networks from which these signals emanate. Consequently, the genesis and composition of E/MEG oscillations requires further clarification. Here we aim to contribute to understanding through a series of parallel measurements of primary motor cortex (M1) oscillations, using human MEG and in-vitro rodent local field potentials. We compare spontaneous activity in the ~10Hz mu and 15-30Hz beta frequency ranges and compare MEG signals with independent and integrated layers III and V(LIII/LV) from in vitro recordings. We explore the mechanisms of oscillatory generation, using specific pharmacological modulation with the GABA-A alpha-1 subunit modulator zolpidem. Finally, to determine the contribution of cortico-cortical connectivity, we recorded in-vitro M1, during an incision to sever lateral connections between M1 and S1 cortices. We demonstrate that frequency distribution of MEG signals appear have closer statistically similarity with signals from integrated rather than independent LIII/LV laminae. GABAergic modulation in both modalities elicited comparable changes in the power of the beta band. Finally, cortico-cortical connectivity in sensorimotor cortex (SMC) appears to directly influence the power of the mu rhythm in LIII. These findings suggest that the MEG signal is an amalgam of outputs from LIII and LV, that multiple frequencies can arise from the same cortical area and that in vitro and MEG M1 oscillations are driven by comparable mechanisms. Finally, corticocortical connectivity is reflected in the power of the SMC mu rhythm. © 2013 Ronnqvist, Mcallister, Woodhall, Stanford and Hall.
Resumo:
This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.
Resumo:
In order to bridge the “Semantic gap”, a number of relevance feedback (RF) mechanisms have been applied to content-based image retrieval (CBIR). However current RF techniques in most existing CBIR systems still lack satisfactory user interaction although some work has been done to improve the interaction as well as the search accuracy. In this paper, we propose a four-factor user interaction model and investigate its effects on CBIR by an empirical evaluation. Whilst the model was developed for our research purposes, we believe the model could be adapted to any content-based search system.
Resumo:
This paper presents an interactive content-based image retrieval framework—uInteract, for delivering a novel four-factor user interaction model visually. The four-factor user interaction model is an interactive relevance feedback mechanism that we proposed, aiming to improve the interaction between users and the CBIR system and in turn users overall search experience. In this paper, we present how the framework is developed to deliver the four-factor user interaction model, and how the visual interface is designed to support user interaction activities. From our preliminary user evaluation result on the ease of use and usefulness of the proposed framework, we have learnt what the users like about the framework and the aspects we could improve in future studies. Whilst the framework is developed for our research purposes, we believe the functionalities could be adapted to any content-based image search framework.
Resumo:
Dissimilarity measurement plays a crucial role in content-based image retrieval, where data objects and queries are represented as vectors in high-dimensional content feature spaces. Given the large number of dissimilarity measures that exist in many fields, a crucial research question arises: Is there a dependency, if yes, what is the dependency, of a dissimilarity measure’s retrieval performance, on different feature spaces? In this paper, we summarize fourteen core dissimilarity measures and classify them into three categories. A systematic performance comparison is carried out to test the effectiveness of these dissimilarity measures with six different feature spaces and some of their combinations on the Corel image collection. From our experimental results, we have drawn a number of observations and insights on dissimilarity measurement in content-based image retrieval, which will lay a foundation for developing more effective image search technologies.
Resumo:
In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Generation of stable dual and/or multiple longitudinal modes emitted from a single quantum dot (QD) laser diode (LD) over a broad wavelength range by using volume Bragg gratings (VBG's) in an external cavity setup is reported. The LD operates in both the ground and excited states and the gratings give a dual-mode separation around each emission peak of 5 nm, which is suitable as a continuous wave (CW) optical pump signal for a terahertz (THz) photomixer device. The setup also generates dual modes around both 1180m and 1260 nm simultaneously, giving four simultaneous narrow linewidth modes comprising two simultaneous difference frequency pump signals. (C) 2011 American Institute of Physics.