985 resultados para Monmouth, Robert Carey, Earl of, ca. 1560-1639.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contraction of vertebrate cardiac muscle is regulated by the binding of Ca$\sp{2+}$ to the troponin C (cTnC) subunit of the troponin complex. In this study, we have used site-directed mutagenesis and a variety of assay techniques to explore the functional roles of regions in cTnC, including Ca$\sp{2+}$/Mg$\sp{2+}$-binding sites III and IV, the functionally inactive site I, the N-terminal helix, the N-terminal hydrophobic pocket and the two cysteine residues with regard to their ability to form disulfide bonds. Conversion of the first Ca$\sp{2+}$ ligand from Asp to Ala inactivated sites III and IV and decreased the apparent affinity of cTnC for the thin filament. Conversion of the second ligand from Asn to Ala also inactivated these sites in the free protein but Ca$\sp{2+}$-binding was recovered upon association with troponin I and troponin T. The Ca$\sp{2+}$-concentrations required for tight thin filament-binding by proteins containing second-ligand mutations were significantly greater than that required for the wild-type protein. Mutation of site I such that the primary sequence was that of an active site with the first Ca$\sp{2+}$ ligand changed from Asp to Ala resulted in a 70% decrease in maximal Ca$\sp{2\sp+}$ dependent ATPase activity in both cardiac and fast skeletal myofibrils. Thus, the primary sequence of the inactive site I in cTnC is functionally important. Major changes in the sequence of the N-terminus had little effect on the ability of cTnC to recover maximal activity but deletion of the first nine residues resulted in a 60 to 80% decrease in maximal activity with only a minor decrease in the pCa$\sb{50}$ of activation, suggesting that the N-terminal helix must be present but that a specific sequence is not required. The formation of an inter- or intramolecular disulfide bonds caused the exposure of hydrophobic surfaces on cTnC and rendered the protein Ca$\sp{2+}$ independent. Finally, elution patterns from a hydrophobic interactions column suggest that cTnC undergoes a significant change in hydrophobicity upon Ca$\sp{2+}$ binding, the majority of which is caused by site II. These latter data show an interesting correlation between exposure of hydrophobic surfaces on and activation of cTnC. Overall, these results represent significant progress toward the elucidation of the functional roles of a variety of structural regions in cTnC. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone remodeling is controlled by the osteoclast, which resorbs bone, and the osteoblast, which synthesizes and secretes proteins that are eventually mineralized into bone. Ca$\sp{2+}$ homeostasis and signaling contribute to the function of nearly all cell types, and understanding both in the osteoblast is of importance given its secretory properties and interaction with osteoclasts. This study was undertaken to identify and investigate the physiology of the Ca$\sp{2+}$ signaling mechanisms present in osteoblasts. The Ca$\sp{2+}$ pumps, stores and channels present in osteoblasts were studied. RT-PCR cloning revealed that osteoblast-like cells express PMCA1b, an alternatively spliced transcript of the plasma membrane Ca$\sp{2+}$-ATPase. The PMCA1b isoform contains a consensus phosphorylation site for cAMP-dependent protein kinase A and a modified calmodulin binding domain. The regulation of osteoblast function by agents that act via cAMP-mediated pathways may involve alterations in the activity of the plasma membrane Ca$\sp{2+}$-ATPase.^ Calcium release from intracellular stores is a signaling mechanism used universally by cells responding to hormones and growth factors, and the compartmentalization and regulated release of calcium is cell-type specific. Fura-2 was employed to monitor intracellular Ca$\sp{2+}$. Thapsigargin and 2,5,-di-(tert-butyl)-1,4-benzohydroquinone (tBuHQ), two inhibitors of endoplasmic reticulum Ca$\sp{2+}$-ATPase activity, both emptied a single intracellular calcium pool which was released in response to either ATP or thrombin, identifying it as the inositol 1,4,5-trisphosphate-sensitive calcium store. The Ca$\sp{2+}$ storage system present in osteoblasts is typical of a non-excitable cell type, despite these cells sharing characteristics of excitable cells such as voltage-sensitive Ca$\sp{2+}$ channels (VSCCs).^ VSCCs are important cell surface regulators of membrane permeability to Ca$\sp{2+}$. In non-excitable cells VSCCs act as cellular transducers of stimulus-secretion coupling, activators of intracellular proteins, and in control of cell growth and differentiation. Functional VSCCs have been shown to exist in osteoblasts, however, no molecular cloning has been reported. To obtain information concerning the molecular identity of the osteoblastic VSCC, we used an RT-PCR regional amplification approach. Sequencing of the products indicated that osteoblasts express at least two isoforms of the L-type VSCC, $\alpha 1\sb{\rm C-a}$ and the $\alpha 1\sb{\rm C-d}$, which share regions of identity to the $\alpha \sb{\rm 1C}$ isoform first identified in cardiac myocytes. The ability of $1,25(\rm OH)\sb2D\sb3$ and structural analogs to modulate expression of Ca$\sp{2+}$ channel mRNA was then investigated. Cells were cultured for 48 hr in the presence of $1,25(\rm OH)\sb2D\sb3$ or vitamin D analogs, and the levels of mRNA encoding VSCC $\alpha \sb{\rm 1C}$ were quantitated using a competitive RT-PCR assay. It was found that $1,25(\rm OH)\sb2D\sb3$ and analog BT reduced steady state levels of $\alpha \sb{\rm 1C}$ mRNA. Conversely, analog AT did not alter steady state levels of Ca$\sp{2+}$ channel mRNA. Since it has been shown previously that analog BT, but not AT, binds and activates the nuclear vitamin D receptor, these findings suggest that the down regulation of channel mRNA involves the nuclear receptor for $1,25(\rm OH)\sb2D\sb3$. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term sensitization in Aplysia is a well studied model for the examination of the cellular and molecules mechanisms of long-term memory. Several lines of evidence suggest long-term sensitization is mediated at least partially by long-term synaptic facilitation between the sensory and motor neurons. The sensitization training and one of its analogues, serotonin (5-HT), can induce long-term facilitation. In this study, another analogue to long-term sensitization training has been developed. Stimulation of peripheral nerves of pleural-pedal ganglia preparation induced long-term facilitation at both 24 hr and 48 hr. This is the first report that long-term facilitation in Aplysia persists for more than 24 hr, which is consistent with the observation that long-term sensitization lasts for more than one day. Thus, the data support the hypothesis that long-term facilitation is an important mechanism for long-term sensitization.^ One of the major differences between short-term and long-term facilitation is that long-term facilitation requires protein synthesis. Therefore, the effects of anisomycin, a protein synthesis inhibitor, on long-term facilitation was examined. Long-term facilitation induced by nerve stimulation was inhibited by 2 $\mu$M anisomycin, which inhibits $\sim$90% of protein synthesis. Nevertheless, at higher concentration (20 $\mu$M), anisomycin induced long-term facilitation by itself, which raises an interesting question about the function of anisomycin other than protein synthesis inhibition.^ Since protein synthesis is critical for long-term facilitation, a major goal is to identify and functionally characterize the molecules whose mRNA levels are altered during the formation of long-term facilitation. Behavioral training or its analogues (nerve stimulation and 5-HT) increases the level of mRNA of calmodulin (CaM). Thus, the role of Ca$\sp{2+}$-CaM-dependent protein kinase II (CaMKII), a major substrate of CaM, in long-term facilitation induced by nerve stimulation was examined. KN-62, a specific CaMKII inhibitor, did not block either the induction or the maintenance of long-term facilitation induced by nerve stimulation. These data indicate that CaMKII may not be involved in long-term facilitation. Another protein whose mRNA level of a molecule was increased by the behavioral training and the treatment of 5-HT is Aplysia tolloid/BMP-1-like protein 1 (apTBL-1). Tolloid in Drosophila and BMP-1 in human tissues are believed to be secreted as a metalloprotease to activate TGF-$\beta.$ Thus, the long-term effects of recombinant human TGF-$\beta1$ on synaptic strength were examined. Treatment of ganglia with TGF-$\beta1$ produced long-term facilitation, but not short-term or intermediate-term facilitation ($\le$4 hr). In addition, TGF-$\beta1$ and 5-HT were not additive in producing long-term facilitation, which indicates an interaction between two cascades. Moreover, 5-HT-induced facilitation (at both 24 hr and 48 hr) and nerve stimulation-induced facilitation (at 24 hr) were inhibited by TGF-$\beta$ sRII, a TGF-$\beta$ inhibitor. These results suggest that TGF-$\beta$ is part of the cascade of events underlying long-term sensitization, and also indicate that a signaling molecule used in development may also have functions in adult neuronal plasticity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] exerts pleiotropic effects on osteoblasts via both long-term nuclear receptor-mediated and rapid membrane-initiated pathways during bone remodeling and mineral homeostasis. This study explored the membrane transducers that mediate rapid effects of 1,25(OH)2D3 on osteoblasts, including sphingomyelinase (SMase) and L-type voltage sensitive calcium channels (VSCCs). ^ It was previously demonstrated that 1,25(OH)2D3 stimulates transmembrane influx of Ca2+ through VSCCs in ROS 17/2.8 osteoblasts, however the molecular identity of 1,25(OH)2D 3-regulated VSCC has not been known. In this study, on the basis of in vitro tests of three unique ribozymes specifically cleaving a1C mRNA, I transfected ROS 17/2.8 cells with vectors coding recombinant ribozyme modified with U1 snRNA structure, and successfully selected stable clonal cells in which the expression of a1C was strikingly reduced. Ca2+ influx studies in these cells compared to control transfectants showed selective attenuation of depolarization- and 1,25(OH)2D3-regulated Ca2+ responses. These results allow us to conclude that the cardiac ( a1C ) subtype of the L-type VSCC is the major membrane transducer of Ca 2+ influx in osteoblasts. ^ I also demonstrated that 1,25(OH)2D3 induces a rapid hydrolysis of membrane sphingomyelin (SM) in ROS 17/2.8 cells, with the concomitant generation of ceramide, detectable at 15 minute, and maximal at 1 hour after addition. Sphingosine, sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine (SPC), downstream products of SM hydrolysis, but not ceramide, elicit Ca 2+ release from intracellular stores. Considering ceramide, sphingosine, and SPP as second messengers modulating intracellular kinases or phosphatases, these findings implicate sphingolipid-signaling pathways in transducing rapid effects of 1,25(OH)2D3 on osteoblasts. In structure/function analyses of sphingolipid signaling, it was observed that psychosine elicits Ca2+ release from intracellular stores. This challenges the dogma that sphingosine phosphorylation permits mobilization of Ca2+ , because psychosine is a sphingosine analog galactosylated at 1-carbon, preventing phosphorylation at that site. Psychosine is the pathological metabolite found in patients with Krabbe's disease, suggesting that psychosine disrupts the physiological sphingolipid signaling by chronic release of Ca2+ from intracellular stores. ^ Slower SM turnover than Ca2+ influx through VSCCs in response to 1,25(OH)2D3 demonstrates ceramide does not mediate the 1,25(OH)2D3-induced Ca2+ signaling, a conclusion endorsed further by the failure of ceramide to induce Ca 2+ signaling. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HCl) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and MP and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4.542 meq Ca, 1, 184 meq Mg, and 2,329 meq Al over a 45 in long and I in wide stream segment, smaller amounts of Be. Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F- occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42- but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al. respectively, in a 4-hour recovery period. Desorption of SO42- occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil-soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream Sediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mountain vegetation is strongly affected by temperature and is expected to shift upwards with climate change. Dynamic vegetation models are often used to assess the impact of climate on vegetation and model output can be compared with paleobotanical data as a reality check. Recent paleoecological studies have revealed regional variation in the upward shift of timberlines in the Northern and Central European Alps in response to rapid warming at the Younger Dryas/Preboreal transition ca. 11700years ago, probably caused by a climatic gradient across the Alps. This contrasts with previous studies that successfully simulated the early Holocene afforestation in the (warmer) Central Alps with a chironomid-inferred temperature reconstruction from the (colder) Northern Alps. We use LandClim, a dynamic landscape vegetation model to simulate mountain forests under different temperature, soil and precipitation scenarios around Iffigsee (2065m a.s.l.) a lake in the Northwestern Swiss Alps, and compare the model output with the paleobotanical records. The model clearly overestimates the upward shift of timberline in a climate scenario that applies chironomid-inferred July-temperature anomalies to all months. However, forest establishment at 9800 cal. BP at Iffigsee is successfully simulated with lower moisture availability and monthly temperatures corrected for stronger seasonality during the early Holocene. The model-data comparison reveals a contraction in the realized niche of Abies alba due to the prominent role of anthropogenic disturbance after ca. 5000 cal. BP, which has important implications for species distribution models (SDMs) that rely on equilibrium with climate and niche stability. Under future climate projections, LandClim indicates a rapid upward shift of mountain vegetation belts by ca. 500m and treeline positions of ca. 2500m a.s.l. by the end of this century. Resulting biodiversity losses in the alpine vegetation belt might be mitigated with low-impact pastoralism to preserve species-rich alpine meadows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic pi–pi stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH) hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI), and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic pi–pi stacking interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very important aspects of the modern nanotechnology are control and prediction of arraying patterns of opto- and electroactive molecules in discrete objects on nanoscale level both on surface and solution. Consequqntly, a self-assembly of small molucules provides such an opportunity.For example, oligopyrenotides (OPs, short amphiphilic pyrene oligomers) represent a novel class of amphiphilic molecules which tend to aggegate in aqueous phase. As has been already shown, OPs are able to form 1D supramolecular polymer only under high salt concentration. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that substitution type of the pyrene is crutial, and it determines a morphology of the assemblies. Thus, a 1.6-linkage causes a formation of large, free-standing 2D supromolecular polymers with a thickness 2 nm. These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long (up to a few micrometer), nanometer thick helical supramolecular polymers. These structures tend to form even more complex structures (bundles, superhelixes). Moreover for both molecules, the polymerizations occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM To characterize the subgingival microbiota within a cohort of adult males (n = 32) naïve to oral hygiene practices, and to compare the composition of bacterial taxa present in periodontal sites with various probing depths. MATERIAL AND METHODS Subgingival plaque samples were collected from single shallow pocket [pocket probing depth (PPD)≤3 mm] and deep pocket (PPD≥6 mm) sites from each subject. A polymerase chain reaction based strategy was used to construct a clone library of 16S ribosomal RNA (rRNA) genes for each site. The sequences of ca. 30-60 plasmid clones were determined for each site to identify resident taxa. Microbial composition was compared using a variety of statistical and bioinformatics approaches. RESULTS A total of 1887 cloned 16S rRNA gene sequences were analysed, which were assigned to 318 operational taxonomic units (98% identity cut-off). The subgingival microbiota was dominated by Firmicutes (69.8%), Proteobacteria (16.3%), and Fusobacteria (8.0%). The overall composition of microbial communities in shallow sites was significantly different from those within deep sites (∫-Libshuff, p < 0.001). CONCLUSIONS A taxonomically diverse subgingival microbiota was present within this cohort; however, the structures of the microbial communities present in the respective subjects exhibited limited variation. Deep and shallow sites contained notably different microbial compositions, but this was not correlated with the rate of periodontal progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sirkeli Höyük is an ancient settlement located 40 km east of Adana on the left bank of the Ceyhan River in Plain Cilicia. The main mound covers an area of approximately 300×400 m and rises to a height of ca. 30 m above the level of the surrounding plain. Due to its strategic location overlooking a road that crosses the Misis mountains, Sirkeli Höyük always played an important role within Plain Cilicia. J. Garstang’s (1936-1937), B. Hrouda’s (1992-1996) and H. Ehringhaus’ (1997) excavations have shown that the site was occupied from the 4th to late 1st millennium B.C. Since 2006, a new Swiss-Turkish team is investigating Sirkeli Höyük again. Due to modern excavation techniques and an interdisciplinary approach, the architectural and material remains that have been uncovered by the new excavations have yielded much new information. Apart from a more precise pottery sequence, the new project has discovered an extensive lower town surrounded by an elaborate double city wall. The paper will summarize the results that have been gathered since 2006, with particular focus on the campaigns 2012-2013, and aims to show how they may contribute to the understanding of the cultural developments in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Lower extremity ischemia-reperfusion injury (IRI)-prolonged ischemia and the subsequent restoration of circulation-may result from thrombotic occlusion, embolism, trauma, or tourniquet application in surgery. The aim of this study was to assess the effect of low-molecular-weight dextran sulfate (DXS) on skeletal muscle IRI. METHODS Rats were subjected to 3 h of ischemia and 2 or 24 h of reperfusion. To induce ischemia the femoral artery was clamped and a tourniquet placed under the maintenance of the venous return. DXS was injected systemically 10 min before reperfusion. Muscle and lung tissue samples were analyzed for deposition of immunoglobulin M (IgM), IgG, C1q, C3b/c, fibrin, and expression of vascular endothelial-cadherin and bradykinin receptors b1 and b2. RESULTS Antibody deposition in reperfused legs was reduced by DXS after 2 h (P < 0.001, IgM and IgG) and 24 h (P < 0.001, IgM), C3b/c deposition was reduced in muscle and lung tissue (P < 0.001), whereas C1q deposition was reduced only in muscle (P < 0.05). DXS reduced fibrin deposits in contralateral legs after 24 h of reperfusion but did not reduce edema in muscle and lung tissue or improve muscle viability. Bradykinin receptor b1 and vascular endothelial-cadherin expression were increased in lung tissue after 24 h of reperfusion in DXS-treated and non-treated rats but bradykinin receptor b2 was not affected by IRI. CONCLUSIONS In contrast to studies in myocardial infarction, DXS did not reduce IRI in this model. Neither edema formation nor viability was improved, whereas deposition of complement and coagulation components was significantly reduced. Our data suggest that skeletal muscle IRI may not be caused by the complement or coagulation alone, but the kinin system may play an important role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged ischemia of skeletal muscle tissue, followed by reperfusion, leads to ischemia/reperfusion injury (IRI), which is a feared local and systemic inflammatory reaction. With respect to the 3Rs, we wanted to determine which parameters for assessment of IRI require a reperfusion time of 24 h and for which 2 h of reperfusion are sufficient. Rats were subjected to 3 h of hind limb ischemia and 2 h or 24 h of reperfusion. Human plasma derived C1 inhibitor was used as a drug to prevent reperfusion injury. For 2 h of reperfusion the rats stayed under anesthesia throughout (severity grade 1), whereas for 24 h they were awake under analgesia during reperfusion (grade 2). The femoral artery was clamped and a tourniquet was placed, under maintenance of venous return. C1 esterase inhibitor was systemically administered 5 min before the induction of ischemia. No differences in local muscle edema formation and depositions of immunoglobulin G and immunoglobulin M were observed between 2 h and 24 h (P > 0.05), whereas lung edema was only observed after 24 h. Muscle viability was significantly lower after 24 h vs 2 h reperfusion (P < 0.05). Increased plasma creatine kinase (CK)-MM and platelet-derived growth factor (PDGF)-bb could be detected after 2 h, but not after 24 h of reperfusion. By contrast, depositions of C3b/c and fibrin in muscle were only detected after 24 h (P < 0.001). In conclusion, for a first screening of drug candidates to reduce IRI, 2 h reperfusions are sufficient, and these reduce the severity of the animal experiment. Twenty-four-hour reperfusions are only needed for in-depth analysis of the mechanisms of IRI, including lung damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asthma and chronic obstructive airways disease are chronic pulmonary diseases which have a high prevalence world-wide. Both conditions can deteriorate acutely and potentially put patients into life-threatening situations. Management of an acute exacerbation starts in the emergency consultation-setting and ends only once the longterm management has been thoroughly assessed and optimised in order to prevent future exacerbations. Exacerbation frequency is strongly associated with long-term morbidity and mortality in both diseases. Recent data have shown that short-course systemic steroids (5 days) for the treatment of an acute exacerbation of COPD are as successful as long-course treatments (14 days) in preventing exacerbations during the subsequent 6 months. Similarly the targeted use of antibiotics is discussed in this review.