828 resultados para Monitoring Program Design
Resumo:
In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm− 3, was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm− 3). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm− 3 at the urban site and 0.9 ± 0.1 cm− 3 at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm− 3, than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O3 levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean value.
Resumo:
Possible drawbacks of microreactors are inefficient reactant mixing and the clogging of microchannels when solid-forming reactions are carried out or solid (catalysts) suspensions are used. Ultrasonic irradiation has been successfully implemented for solving these problems in microreactor configurations ranging from capillaries immersed in ultrasonic baths to devices with miniaturized piezoelectric transducers. Moving forward in process intensification and sustainable development, the acoustic energy implementation requires a strategy to optimize the microreactor from an ultrasound viewpoint during its design. In this work, we present a simple analytical model that can be used as a guide to achieving a proper acoustic design of stacked microreactors. An example of this methodology was demonstrated through finite element analysis and it was compared with an experimental study found in the literature.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
Background: Flu vaccine composition is reformulated on a yearly basis. As such, the vaccine effectiveness (VE) from previous seasons cannot be considered for subsequent years, and it is necessary to monitor the VE for each season. This study (MonitorEVA- monitoring vaccine effectiveness) intends to evaluate the feasibility of using the national influenza surveillance system (NISS) for monitoring the influenza VE. Material and methods: Data was collected within NISS during 2004 to 2014 seasons. We used a case-control design where laboratory confirmed incident influenza like illness (ILI) patients (cases) were compared to controls (ILI influenza negative). Eligible individuals consisted on all aged individuals that consult a general practitioner or emergency room with ILI symptoms with a swab collected within seven days of symptoms onset. VE was estimated as 1- odds ratio of being vaccinated in cases versus controls adjusted for age and month of onset by logistic regression. Sensitivity analyses were conducted to test possible effect of assumptions on vaccination status, ILI definition and timing of swabs (<3 days after onset). Results: During the 2004-2014 period, a total of 5302 ILI patients were collected but 798 ILI were excluded for not complying with inclusion criteria. After data restriction the sample size in both groups was higher than 148 individuals/ season; minimum sample size needed to detect a VE of at least 50% considering a level of significance of 5% and 80% power. Crude VE point estimates were under 45% in 2004/05, 2005/06, 2011/12 and 2013/14 season; between 50%-70% in 2006/07, 2008/09 and 2010/11 seasons, and above 70% in 2007/08 and 2012/13 season. From season 2006/07 to 2013/14, all crude VE estimates were statistically significant. After adjustment for age group and month of onset, the VE point estimates decreased and only 2008/09, 2012/13 and 2013/14 seasons were significant. Discussion and Conclusions: MonitorEVA was able to provide VE estimates for all seasons, including the pandemic, indicating if the VE was higher than 70% and less than 50%. When comparing with other observational studies, MonitorEVA estimates were comparable but less precise and VE estimates were in accordance with the antigenic match of the circulating virus/ vaccine strains. Given the sensitivity results, we propose a MonitorEVA based on: a) Vaccination status defined independently of number of days between vaccination and symptoms onset; b) use of all ILI data independent of the definition; c) stratification of VE according to time between onset and swab (< 3 and ≥3 days).
Resumo:
Article is devoted to design of optimum electromagnets for magnetic levitation of transport systems. The method of electromagnets design based on the inverse problem solution of electrical equipment is offered. The method differs from known by introducing a stage of minimization the target functions providing the stated levitation force and magnetic induction in a gap, and also the mass of an electromagnet. Initial values of parameters are received, using approximate formulas of the theory of electric devices and electrical equipment. The example of realization of a method is given. The received results show its high efficiency at design. It is practical to use the offered method and the computer program realizing it as a part of system of the automated design of electric equipment for transport with a magnetic levitation.
Resumo:
An experiment was conceived in which we monitored degradation of GlcDGD. Independent of the fate of the [14C]glucosyl headgroup after hydrolysis from the glycerol backbone, the 14C enters the aqueous or gas phase whereas the intact lipid is insoluble and remains in the sediment phase. Total degradation of GlcDGD then is obtained by combining the increase of radioactivity in the aqueous and gaseous phases. We chose two different sediment to perform this experiment. One is from microbially actie surface sediment sampled in February 2010 from the upper tidal flat of the German Wadden Sea near Wremen (53° 38' 0N, 8° 29' 30E). The other one is deep subsurface sediments recovered from northern Cascadia Margin during Integrated Ocean Drilling Program Expedition 311 [site U1326, 138.2 meters below seafloor (mbsf), in situ temperature 20 °C, water depth 1,828 m. We performed both alive and killed control experiments for comparison. Surface and subsurface sediment slurry were incubated in the dark at in situ temperature, 4 °C and 20 °C for 300 d, respectively. The sterilized slurry was stored at 20 °C. All incubations were carried out under N2 headspace to ensure anaerobic conditions. The sampling frequency was high during the first half-month, i.e., after 1, 2, 7, and 14 d; thereafter, the sediment slurry was sampled every 2 months. At each time point, samples were taken in triplicate for radioactivity measurements. After 300 d of incubation, no significant changes of radioactivity in the aqueous phase were detected. This may be the result of either the rapid turnover of released [14C] glucose or the relatively high limit of detection caused by the slight solubility (equivalent to 2% of initial radioactivity) of GlcDGD in water. Therefore, total degradation of GlcDGD in the dataset was calculated by combining radioactivity of DIC, CH4, and CO2, leading to a minimum estimate.
Resumo:
Wyoming Highway Patrol, Commercial Carrier Section, Cheyenne
Resumo:
Arkansas State Highway and Transportation Department, Little Rock
Resumo:
National Highway Traffic Safety Administration, National Center for Statistics and Analysis, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: "Repair, Evaluation, Maintenance, and Rehabilitation Research Program."
Resumo:
"NCJ 168106."
Resumo:
Mode of access: Internet.
Resumo:
Shipping list no.: 91-187-P.