973 resultados para Metals at high temperatures
Resumo:
We have found trace inclusions of Ni-rich magnesiowüstite within grains of magnesioferrite spinel recovered from Cretaceous/Tertiary boundary sediments from DSDP Site 596, South Pacific (23°51.20'S, 169°39.27'W) and DSDP Site 577, North Pacific (3°6.51'N, 157°43.40'E). Measured compositions of these inclusions range from (Mg_0.85Ni_0.74Fe_0.17)O to (Mg_0.74Ni_0.09Fe_0.17)O. Coexisting magnesioferrite and magnesiowüstite can only crystallize from ultramafic, refractory, Mg-rich liquids with Mg/Si > 2 (atom ratio). Such liquid compositions cannot form as a result of fractional crystallization and are unknown to occur as a result of terrestrial igneous processes or meteoroid ablation. We infer that these minerals crystallized from liquid droplets that equilibrated with silicate vapor at high temperatures (probably >2300°C), resulting in fractionation of volatile SiO2 from more refractory MgO. The most plausible source of this high-temperature vapor is in the fireball of the major impact event that terminated the Cretaceous.
Resumo:
During the mid-Cretaceous period, the global subsurface oceans were relatively warm, but the origins of the high temperatures are debated. One hypothesis suggests that high sea levels and the continental configuration allowed high-salinity waters in low-latitude epicontinental shelf seas to sink and form deep-water masses (Brass et al., 1982, doi:10.1038/296620a0; Arthur and Natland, 1979; Chamberlin, 1906). In another scenario, surface waters in high-latitude regions, the modern area of deep-water formation, were warmed through greenhouse forcing (Bice and Marotzke, 2001, doi:10.1029/2000JC000561), which then propagated through deep-water circulation. Here, we use oxygen isotopes and Mg/Ca ratios from benthic foraminifera to reconstruct intermediate-water conditions in the tropical proto-Atlantic Ocean from 97 to 92 Myr ago. According to our reconstruction, intermediate-water temperatures ranged between 20 and 25 °C, the warmest ever documented for depths of 500-1,000 m. Our record also reveals intervals of high-salinity conditions, which we suggest reflect an influx of saline water derived from epicontinental seas around the tropical proto-North Atlantic Ocean. Although derived from only one site, our data indicate the existence of warm, saline intermediate waters in this silled basin. This combination of warm saline intermediate waters and restricted palaeogeography probably acted as preconditioning factors for the prolonged period of anoxia and black-shale formation in the equatorial proto-North Atlantic Ocean during the Cretaceous period.
Resumo:
In the lower part of DSDP core 53.0, partly recrystallized carbonate sediments and well recrystallized limestone breccias of Oligo-Miocene age are associated with altered volcanic flows, lithified tuffs, and tuff breccias, suggesting that carbonate alteration was the result of thermal metamorphism. However, the oxygen isotope compositions of these carbonates (-3.4 to +0.6 per mil rel. PDB) are not compatible with recrystallization and isotope exchange with sea water at high temperatures. Evaluating the effects of the composition of the water which exchanged with the carbonates and of carbonate-water isotope exchange in closed systems yields the following approximate maximum temperature of recrystallization: limestone breccias, 100°C; calcite veins rimming breccia clasts, 30°C; and unconsolidated sediments overlying the breccias, 20°C. Therefore, the volcanics at site 53.0 must have been emplaced into the primary carbonate sediments at relatively low temperatures. Subsequent carbonate alteration was probably a consequence of chemical changes in ambient pore waters resulting from the submarine weathering of volcanic material.
Resumo:
In three veins from the lower part of Deep Sea Drilling Project Hole 504B, 298 meters below the top of basement, primary augite is replaced by aegirine-augite. This transformation occurs only in subophitic basalts, at the contact with veins which always include a dark-olive, Mg-rich clay mineral. Talc occurs in one of these veins; it can be regarded either as a vein constituent or as a product of augite alteration. Melanite (Ca,Fe,Ti-rich garnet) appears in only one of these three veins, where a Ca-carbonate is associated with a Mg-rich clay mineral. The occurrence of melanite in Hole 504B could be due to the conjunction of particular conditions: (1) basalt with a subophitic texture, (2) presence of hydrothermal fluids carrying Ca, Fe, Si, Ti, Al, Mg, and Na, (3) rather high temperatures. Possibly the melanite and aegirine-augite formed by deuteric alteration.
Resumo:
Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250? C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting.
Resumo:
The basement cored at Site 1201 (west Philippine Basin) during Ocean Drilling Program Leg 195 consists of a 91-m-thick sequence of basalts, mostly pillow lavas and perhaps one sheet lava flow, with a few intercalations of hyaloclastite and interpillow sedimentary material. Hydrothermal alteration pervasively affected the basalt sequence, giving rise to a variety of secondary minerals such as K-Fe-Mg-clay minerals, oxyhydroxides and clay minerals mixtures, natrolite group zeolites, analcite, alkali feldspar, and carbonate. The primary minerals of pillow and sheet basalts that survived the intense hydrothermal alteration were investigated by electron microprobe with the aim of characterizing their chemical composition and variability. The primary minerals are mostly plagioclase, ranging in composition from bytownite through labradorite to andesine, chromian-magnesian-diopside, and spinels, both Ti magnetite (partially maghemitized) and chromian spinel. Overall, the chemical features of the primary minerals of Site 1201 basalts correspond to the primitive character of the bulk rocks, suggesting that the parent magma of these basalts was a mafic tholeiitic magma that most likely only suffered limited fractional crystallization and crystallized at high temperatures (slightly below 1200°C) and under increasing fO2 conditions. The major element composition of clinopyroxene suggests a backarc affinity of the mantle source of Site 1201 basement.
Resumo:
A comprehensive experimental study, utilizing a rocking autoclave hydrothermal apparatus with isotope tracers, was applied to evaluate the temperature of squeezing artifacts on B contents and isotopic compositions in pore waters. The partition coefficient (KD) was determined at temperatures from 25 ° to 350 °C, at 800 bars, and this information was applied to reconstruct pore water B and d11B in ODP drill sites, where pH, T, and porosity are known. The partition coefficient of B is a function of temperature, pH, and sediment mineralogy. The solution pH exerts a dominant control at low temperatures; however, KD decreases to a value of essentially zero (compared to that of KD = ~3.5 at 25 °C) at high temperatures indicating no adsorption. Two empirical equations were derived to represent most of the available experimental results. For pelagic clay rich sediments, a KD = -3.84-0.020T + 0.88pH (R = 0.84; 1sigma = 0.25) is established. For sediments that have experienced progressive metamorphism, a KD = -1.38-0.008T + 0.59pH (R = 0.81; 1sigma = 0.37) can be applied. Similarly the effect on pore water d11B can be corrected if the fractionation factors at different temperatures are assumed. The corrected B and d11B in ODP Sites 671, 672, and 808 indicate significant mobilization of bulk B in sediment (exchangeable + lattice bound) at depth, especially near the décollement zone or other potential flow conduits. Tectonically expelled fluids from mud diapirs of Barbados Ridge Complex, hot springs of Rumsey Hills, California, and mud pot waters of the Salton Sea geothermal field, are enriched in B (up to 20 mM) with lower d11B, supporting the argument of B mobilization as a result of fluid expulsion in accretionary prisms.
Resumo:
We discuss the provenance of minerals detected by X-ray-diffraction analyses of sediments of Sites 504 and 505 of Deep Sea Drilling Project Leg 69. These are X-ray-amorphous material, opal-CT, calcite, quartz, feldspar, apatite, smectite, illite, kaolinite, magnetite, maghemite, pyrite, marcasite, barite, sepiolite, and clinoptilolite. Authigenic marcasite and clinoptilolite together with opal-CT are restricted to Site 504, indicating the special diagenetic conditions related to relatively high sediment temperatures at this site. Marcasite formation is likely dependent on the relatively low pH values of <7.1 found in interstitial waters of Site 504 sediments below 50 meters sub-bottom. Clinoptilolite evidently was formed by diagenetic alteration of rhyolitic volcanic glass or smectite plus biogenic silica within the chalk-limestone-chert sequence of Site 504, where opal-CT also reflects a high degree of silica dissolution and reprecipitation. This was a consequence of high temperatures (50-55 °C) at the base of the sediment column.
Resumo:
Values of physical properties measured in the upper sections of sediment cores recovered at Sites 504 and 505 exhibit a remarkable similarity. Below a depth of 145 m Site 504 sediments appear to have undergone changes which are reflected in physical property values. This alteration may have been due to high temperatures in the sediment. In most of Site 505, and in Site 504 above 145 m, seismic velocity averages 1.51 km/s, wet bulk density 1.32 g/cm**3, porosity 80%, and thermal conductivity 0.80% W/m °K. Below 145 m at Site 504 and 210 m at Site 505, mean density increases to 1.40 g/cm**3, porosity decreases to 67%, seismic velocity increases to 1.53 km/s, and thermal conductivity increases to values in excess of 1.0 W/m °K. A good correlation between independent measurements of water content and thermal resistivity supports the existence of small but regular variation in the measured parameters on the scale of 10 m and less.
Resumo:
In the eurythermal cuttlefish Sepia officinalis, performance depends on hearts that ensure systemic oxygen supply over a broad range of temperatures. We therefore aimed to identify adjustments in energetic cardiac capacity and underlying mitochondrial function supporting thermal acclimation and adaptation that could be crucial for the cuttlefish's competitive success in variable environments. Two genetically distinct cuttlefish populations were acclimated to 11, 16 and 21°C. Subsequently, skinned and permeabilised heart fibres were used to assess mitochondrial functioning by means of high-resolution respirometry and a substrate-inhibitor protocol, followed by measurements of cardiac citrate synthase and cytosolic enzyme activities. Temperate English Channel cuttlefish had lower mitochondrial capacities but larger hearts than subtropical Adriatic cuttlefish. Warm acclimation to 21°C decreased mitochondrial complex I activity in Adriatic cuttlefish and increased complex IV activity in English Channel cuttlefish. However, compensation of mitochondrial capacities did not occur during cold acclimation to 11°C. In systemic hearts, the thermal sensitivity of mitochondrial substrate oxidation was high for proline and pyruvate but low for succinate. Oxygen efficiency of catabolism rose as temperature changed from 11 to 21°C via shifts to oxygen-conserving oxidation of proline and pyruvate and via reduced relative proton leak. The changes observed for substrate oxidation, mitochondrial complexes, relative proton leak and heart mass improve energetic efficiency and essentially seem to extend tolerance to high temperatures and reduce associated tissue hypoxia. We conclude that cuttlefish sustain cardiac performance and, thus, systemic oxygen delivery over short- and long-term changes of temperature and environmental conditions by multiple adjustments in cellular and mitochondrial energetics.
Resumo:
High Li concentrations, up to a maximum of 1155 µM are observed in the pore fluids of the Peru convergent margin slope sediments. At Ocean Drilling Program Sites 683 and 685 (ca. 9°S), the Li concentration depth gradients are twice as steep as at Site 682 and 688 (ca. 11°S). Within the sediments, the most important Li sources are from aluminosilicate minerals. Biogenic opal-A contains little Li and thus dilutes the Li concentration of the bulk sediments. The sediment compositions and the thermal regimes are similar at 9° and 11°S, suggesting there is an additional, non-sedimentary source for the observed high Li concentrations in the northern pore fluids. At 9°S, the 87Sr/86Sr ratios reach a maximum value of 0.709958. The observed radiogenic 87Sr/86Sr values in the pore fluids support the suggestion that the additional Li may derive from exchange reactions with underlying continental crust. The high concentrations of Li at 11°S may derive from basalt alteration at moderate to high temperatures, as suggested by the non-radiogenic 87Sr/86Sr ratios in these pore fluids, which reach a minimum value of 0.707218. Based on (1) Li concentrations in the pore fluids in slope sediments from Peru and several other margins, and (2) an approximate estimate of fluid flux from continental margins into the ocean, continental margins provide an estimated 1 to 3 * 10**10 moles Li/yr to the ocean. This source of oceanic Li, which has not been considered previously, is of the same order of magnitude as some estimates of hydrothermal and river Li fluxes and may have important consequences for the oceanic Li isotope budget. The sink is unknown for this newly discovered and possibly large Li source, but it may be more pervasive low-temperature alteration of oceanic basement than previously estimated, or burial of mineral phases, such as authigenic clay minerals, or metal oxyhydroxides which may be Li-rich.
Resumo:
Phospholipid fatty acids were measured in samples of 60°-130°C sediment taken from three holes at Site 1036 (Ocean Drilling Program Leg 169) to determine microbial community structure and possible community replacement at high temperatures. Five of six samples had similar concentrations of phospholipid fatty acids (2-6 pmol/g dry weight of sediment), and biomass estimates from these measurements compare favorably with direct microscopic counts, lending support to previous microscopic measures of deep sedimentary biomass. Very long-chain phospholipid fatty acids (21 to 30 carbons) were detected in the sediment and were up to half the total phospholipid fatty acid measured; they appear to increase in abundance with temperature, but their significance is not known. Community composition from lipid analysis showed that samples contained standard eubacterial membrane lipids but no detectable archaeal lipids, though archaea would be expected to dominate the samples at high temperatures. Cluster analysis of Middle Valley phospholipid fatty acid compositions shows that lipids in Middle Valley sediment samples are similar to each other at all temperatures, with the exception of very long-chain fatty acids. The data neither support nor deny a shift to a high-temperature microbial community in hot cores, so at the present time we cannot draw conclusions about whether the microbes observed in these hot sediments are active.
Resumo:
Respiration of ectotherms is predicted to increase faster with rising environmental temperature than photosynthesis of primary producers because of the differential temperature dependent kinetics of the key enzymes involved. Accordingly, if biological processes at higher levels of complexity are constrained by underlying metabolic functions food consumption by heterotrophs should increase more rapidly with rising temperature than photo-autoptrophic primary production. We compared rates of photosynthesis and growth of the benthic seaweed Fucus vesiculosus with respiration and consumption of the isopod Idotea baltica to achieve a mechanistic understanding why warming strengthens marine plant-herbivore interactions. In laboratory experiments thallus pieces of the seaweed and individuals of the grazer were exposed to constant temperatures at a range from 10 to 20°C. Photosynthesis of F. vesiculosus did not vary with temperature indicating efficient thermal acclimation whereas growth of the algae clearly increased with temperature. Respiration and food consumption of I. baltica also increased with temperature. Grazer consumption scaled about 2.5 times faster with temperature than seaweed production. The resulting mismatch between algal production and herbivore consumption may result in a net loss of algal tissue at elevated temperatures. Our study provides an explanation for faster decomposition of seaweeds at elevated temperatures despite the positive effects of high temperatures on algal growth.
Resumo:
A study of chemical and isotopic composition of coastal thermal springs and waters of the Kraternaya Bay, Yankicha Island, revealed that the total mineralization and concentrations of d18O and d2H decrease from the thermal spring site I to V. These waters are of marine origin with various proportions of local meteoric water. Thermal waters of the site VI have considerably altered chemical and isotopic composition due to high temperatures of surrounding rocks. Base temperatures calculated for this area were 130-200°C. Coastal thermal springs affect isotopic composition of water throughout the bay.
Resumo:
There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.