944 resultados para Metal insulator transition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uncontrolled disposal of solid wastes poses an immediate threat to public health and a long term threat to the environmental well being of future generations. Solid waste is waste resulting from human activities that is solid and unwanted (Peavy et al., 1985). If unmanaged, dumped solid wastes generate liquid and gaseous emissions that are detrimental to the environment. This can lead to a serious form of contamination known as metal contamination, which poses a risk to human health and ecosystems. For example, some heavy metals (cadmium, chromium compounds, and nickel tetracarbonyl) are known to be highly toxic, and are aggressive at elevated concentrations. Iron, copper, and manganese can cause staining, and aluminium causes depositions and discolorations. In addition, calcium and magnesium cause hardness in water causing scale deposition and scum formation. Though not a metal but a metalloid, arsenic is poisonous at relatively high concentrations and when diluted at low concentrations causes skin cancer. Normally, metal contaminants are found in a dissolved form in the liquid percolating through landfills. Because average metal concentrations from full-scale landfills, test cells, and laboratory studies have tended to be generally low, metal contamination originating from landfills is not generally considered a major concern (Kjeldsen et al., 2002; Christensen et al., 1999). However, a number of factors make it necessary to take a closer look at metal contaminants from landfills. One of these factors relates to variability. Landfill leachate can have different qualities depending on the weather and operating conditions. Therefore, at one moment in time, metal contaminant concentrations may be quite low, but at a later time these concentrations could be quite high. Also, these conditions relate to the amount of leachate that is being generated. Another factor is biodiversity. It cannot be assumed that a particular metal contaminant is harmless to flora and fauna (including micro organisms) just because it is harmless to human health. This has significant implications for ecosystems and the environment. Finally, there is the moral factor. Because uncertainty surrounds the potential effects of metal contamination, it is appropriate to take precautions to prevent it from taking place. Consequently, it is necessary to have good scientific knowledge (empirically supported) to adequately understand the extent of the problem and improve the way waste is being disposed of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of disc-like chromium hydroxide nanomaterials to chromium oxide nanomaterials has been studied by hot stage Raman spectroscopy. The structure and morphology of α-CrO(OH) synthesised using hydrothermal treatment was confirmed by X-ray diffraction and transmission electron microscopy. The Raman spectrum of α-CrO(OH) is characterised by two intense bands at 823 and 630 cm-1 attributed to ν1 CrIII-O symmetric stretching mode, bands at 1179 cm-1 attributed to CrIII-OH δ deformation modes. No bands are observed above 3000 cm-1. The absence of characteristic OH vibrational bands may be due to short hydrogen bonds in the α-CrO(OH) structure. Upon thermal treatment of α-CrO(OH), new Raman bands are observed at 599, 542, 513, 396, 344 and 304 cm-1, which are attributed to Cr2O3. This hot-stage Raman study shows that the transition of α-CrO(OH) to Cr2O3 occurs before 350 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromium oxide gel material was synthesised and appeared to be X-ray amorphous. The changes in the structure of the synthetic chromium oxide gel were investigated using hot-stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot-stage Raman spectra. Two bands were observed at 849 and 735 cm-1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O-CrIII-OH and O-CrIII-O. With temperature increase, the intensity of the band at 849 cm-1 decreased, while the band at 735 cm-1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O-CrIII-O units in the structure. A strongly hydrogen bonded water H-O-H bending band was found at 1704 cm-1 in the Raman spectrum of the chromium oxide gel, however this band shifted to around 1590 cm-1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm-1 attributed to the thermal decomposed product Cr2O3. The use of the hot-stage Raman microscope enabled low-temperature phase changes brought about through dehydration and dehydroxylation to be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic indium hydroxide nanomaterials were obtained by a low temperature soft-chemical method without any surfactants. The transition of nano-cubic indium hydroxide to cubic indium oxide during dehydroxylation has been studied by infrared emission spectroscopy. The spectra are related to the structure of the materials and the changes in the structure upon thermal treatment. The infrared absorption spectrum of In(OH)3 is characterised by an intense OH deformation band at 1150 cm-1 and two O-H stretching bands at 3107 and 3221 cm-1. In the infrared emission spectra, the hydroxyl-stretching and hydroxyl-bending bands diminish dramatically upon heating, and no intensity remains after 200 °C. However, new low intensity bands are found in the OH deformation region at 915 cm-1 and in OH stretching region at 3437 cm-1. These bands are attributed to the vibrations of newly formed InOH bonds because of the release and transfer of protons during calcination of the nanomaterial. The use of infrared emission spectroscopy enables the low-temperature phase transition brought about through dehydration of In(OH)3 nanocubes to be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of the first year experience (FYE) to success at university is well documented and supported with the transition into university regarded as crucial. While there is also support for the notion that a successful FYE should have a whole-of-institution focus and models have been proposed, many institutions still face challenges in achieving institution-wide FYE program implementation. This paper discusses the origins, theoretical and empirical bases and structure of an institution-wide approach to the FYE. It uses a case study of the Transitions In Project (TIP) at the Queensland University of Technology to illustrate how institution-wide FYE program implementation can be achieved and sustained. TIP had four inter-related projects focussing on at-risk students, first year curriculum, learning resources and staff development. The key aim of TIP was to identify good practice and institutionalise it in a sustainable way. The degree of success in achieving this is evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistics presented in Australia Council reports such as Don’t Give Up Your Day Job (2003), and Artswork: A Report On Australians Working in the Arts 1 and 2 (1997, 2005), and in other studies on destinations for Performing Arts graduates, demonstrate the diversity of post-graduation pathways for our students, the prevalence of protean careers, and the challenges in developing a sense of professional identity in a context where a portfolio of work across performance making, producing, administration and teaching can make it difficult for young artists to establish career status and capital in conventional terms (cf. Dawn Bennett, “Academy and the Real World: Developing Realistic Notions of Career in the Performing Arts”, Arts & Humanities in Higher Education, 8.3, 2009). In this panel, academics from around Australia will consider the ways in which Drama, Theatre and Performance Studies as a discipline is deploying a variety of practical, professional and work-integrated teaching and learning activities – including performance-making projects, industry projects, industry placements and student-initiated projects – to connect students with the networks, industries and professional pathways that will support their progression into their career. The panellists include Bree Hadley (Queensland University of Technology), Meredith Rogers (La Trobe University), Janys Hayes (Woolongong University) and Teresa Izzard (Curtin University). The panelists will present insights into the activities they have found successful, and address a range of questions, including: How do we introduce students to performance-making and / or producing models they will be able to employ in their future practice, particularly in light of the increasingly limited funds, time and resources available to support students’ participation in full-scale productions under the stewardship of professional artists?; How and when do we introduce students to industry networks?; How do we cater for graduates who will work as performers, writers, directors or administrators in the non-subsidised sector, the subsidised sector, community arts and education?; How do we category cater for graduates who will go on to pursue their work in a practice-as-research context in a Higher Degree?; How do we assist graduates in developing a professional identity? How do we assist graduates in developing physical, professional and personal resilience?; How do we retain our connections with graduates as part of their life-long learning?; Do practices and processes need to differ for city or regionally based / theoretically or practically based degree programs?; How do our teaching and learning activities align with emergent policy and industrial frameworks such as the shift to the “Producer Model” in Performing Arts funding, or the new mentorship, project, production and enterprise development opportunities under the Australia Council for the Arts’ new Opportunities for Young and Emerging Artists policy framework?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Becoming a teacher in technology-rich classrooms is a complex and challenging transition for career-change entrants. Those with generic or specialist Information and Communication Technology (ICT) expertise bring a mindset about purposeful uses of ICT that enrich student learning and school communities. The transition process from a non-education environment is both enhanced and constrained by shifting the technology context of generic or specialist ICT expertise, developed through a former career as well as general life experience. In developing an understanding of the complexity of classrooms and creating a learner centred way of working, perceptions about learners and learning evolve and shift. Shifts in thinking about how ICT expertise supports learners and enhances learning preceded shifts in perceptions about being a teacher, working with colleagues, and functioning in schools that have varying degrees of intensity and impact on evolving professional identities. Current teacher education and school induction programs are seen to be falling short of meeting the needs of career-change entrants and, as a flow on, the students they nurture. Research (see, for example, Tigchelaar, Brouwer, & Korthagen, 2008; Williams & Forgasz, 2009) highlights the value of generic and specialist expertise career-change teachers bring to the profession and draws attention to the challenges such expertise begets (Anthony & Ord, 2008; Priyadharshini & Robinson-Pant, 2003). As such, the study described in this thesis investigated perceptions of career-change entrants, who have generic (Mishra & Koehler, 2006) or specialist expertise, that is, ICT qualifications and work experience in the use of ICT. The career-change entrants‘ perceptions were sought as they shifted the technology context and transitioned into teaching in technology-rich classrooms. The research involved an interpretive analysis of qualitative data and quantitative data. The study used the explanatory case study (Yin, 1994) methodology enriched through grounded theory processes (Strauss & Corbin, 1998), to develop a theory about professional identity transition from the perceptions of the participants in the study. The study provided insights into the expertise and experiences of career change entrants, particularly in relation to how professional identities that include generic and specialist ICT knowledge and expertise were reconfigured while transitioning into the teaching profession. This thesis presents the Professional Identity Transition Theory that encapsulates perceptions about teaching in technology-rich classrooms amongst a selection of the increasing number of career-change entrants. The theory, grounded in the data, (Strauss & Corbin, 1998) proposes that career-change entrants experience transition phases of varying intensity that impact on professional identity, retention and development as a teacher. These phases are linked to a shift in perceptions rather than time as a teacher. Generic and specialist expertise in the use of ICT is a weight of the past and an asset that makes the transition process more challenging for career-change entrants. The study showed that career-change entrants used their experiences and perceptions to develop a way of working in a school community. Their way of working initially had an adaptive orientation focussed on immediate needs as their teaching practice developed. Following a shift of thinking, more generative ways of working focussed on the future emerged to enable continual enhancement and development of practice. Sustaining such learning is a personal, school and systemic challenge for the teaching profession.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to halotrichites of the formula MgAl2(SO4)4∙22H2O, MnAl2(SO4)4∙22H2O and ZnAl2(SO4)4∙22H2O. Comparison of the halotrichites in different spectral regions has shown that the incorporation of a divalent transition metal into the halotrichite structure causes a shift in OH stretching band positions to lower wavenumbers. Therefore, an increase in hydrogen bonded water is observed for divalent cations with a larger molecular mass. XRD has confirmed the formation of halotrichite for all three samples and characteristic peaks of halotrichite have been identified at 18.5 and 24.5° 2θ, along with a group of six peaks between 5 and 15° 2θ. It has been observed that Mg-Al and Mn-Al halotrichite are very similar in structure, while Zn-Al showed several differences particularly in the NIR spectra. This work has shown that halotrichite structures can be synthesised and characterised by infrared and NIR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A limiting step to roll-to-roll production of dye-sensitized solar cells on metals is TiO2 sintering (10-30 min). Near infrared (NIR) heating is a novel process innovation which directly heats titanium substrates giving rapid binder removal and sintering. NIR heating (for 12.5 s) at varying power gave titanium temperatures of 545, 685 and 817 degrees Celsius yielding cells with efficiencies of 2.9, 2.8 and 2.5%. Identical cells prepared in a conventional oven (1800 s) at 500, 600 and 800 degrees Celsius gave 2.9, 2.6 and 0.2% efficiency. NIR sintering is ultrafast and has a wide process window making it ideal for rapid manufacturing on metals.