818 resultados para Membership


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180° out of phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new methodology for the adjustment of fuzzy inference systems. A novel approach, which uses unconstrained optimization techniques, is developed in order to adjust the free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through an estimation of time series. More specifically, the Mackey-Glass chaotic time series estimation is used for the validation of the proposed methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the motivograma and interviews the degree of motivation of the survey participants was defined as satisfactory. On one hand there is satisfaction with the physiological needs, self-esteem and self confidence, on the other there is high dissatisfaction with the association and self-realization, justifying the request for strengthening the membership and performance improvements in the research area. Linking up security and association with the other ones group protection sentiments and work environment dependence sentiments prevail. It was concluded that: (1) Those satisfied ones declare that they are safe, protected and with good self-esteem doing their teaching work. The ones dissatisfied with the non-group belonging demonstrate dissatisfaction with the self-realization and expose their difficulties with social ties and the lack of integration in the teaching work. (3) The degree of motivation satisfactory is related to the satisfaction of basic needs, located in the first steps of Maslow's hierarchy. Accepting that the changes in higher education require motivated behaviors, the question arises: how can the motivation in teaching work be possible if the majority of organizations do not find a way to deal with the person of the Professor? Finally, the context of work is predominant in the provision of job satisfaction in teaching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes Bibliography

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of full programmable type-2 membership function circuit is presented in this paper. This circuit is used to implement the fuzzifier block of Type-2 Fuzzy Logic Controller chip. In this paper the type-2 fuzzy set was obtained by blurring the width of the type-1 fuzzy set. This circuit allows programming the height and the shape of the membership function. It operates in current mode, with supply voltage of 3.3V. The simulation results of interval type-2 membership function circuit have been done in CMOS 0.35μm technology using Mentor Graphics software. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prediction of the traffic behavior could help to make decision about the routing process, as well as enables gains on effectiveness and productivity on the physical distribution. This need motivated the search for technological improvements in the Routing performance in metropolitan areas. The purpose of this paper is to present computational evidences that Artificial Neural Network ANN could be use to predict the traffic behavior in a metropolitan area such So Paulo (around 16 million inhabitants). The proposed methodology involves the application of Rough-Fuzzy Sets to define inference morphology for insertion of the behavior of Dynamic Routing into a structured rule basis, without human expert aid. The dynamics of the traffic parameters are described through membership functions. Rough Sets Theory identifies the attributes that are important, and suggest Fuzzy relations to be inserted on a Rough Neuro Fuzzy Network (RNFN) type Multilayer Perceptron (MLP) and type Radial Basis Function (RBF), in order to get an optimal surface response. To measure the performance of the proposed RNFN, the responses of the unreduced rule basis are compared with the reduced rule one. The results show that by making use of the Feature Reduction through RNFN, it is possible to reduce the need for human expert in the construction of the Fuzzy inference mechanism in such flow process like traffic breakdown. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification and classification of overlapping nodes in networks are important topics in data mining. In this paper, a network-based (graph-based) semi-supervised learning method is proposed. It is based on competition and cooperation among walking particles in a network to uncover overlapping nodes by generating continuous-valued outputs (soft labels), corresponding to the levels of membership from the nodes to each of the communities. Moreover, the proposed method can be applied to detect overlapping data items in a data set of general form, such as a vector-based data set, once it is transformed to a network. Usually, label propagation involves risks of error amplification. In order to avoid this problem, the proposed method offers a mechanism to identify outliers among the labeled data items, and consequently prevents error propagation from such outliers. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method. © 2012 Springer-Verlag.