926 resultados para Mechanical property prediction
Resumo:
Ventilator-associated pneumonia (VAP) affects mortality, morbidity and cost of critical care. Reliable risk estimation might improve end-of-life decisions, resource allocation and outcome. Several scoring systems for survival prediction have been established and optimised over the last decades. Recently, new biomarkers have gained interest in the prognostic field. We assessed whether midregional pro-atrial natriuretic peptide (MR-proANP) and procalcitonin (PCT) improve the predictive value of the Simplified Acute Physiologic Score (SAPS) II and Sequential Related Organ Failure Assessment (SOFA) in VAP. Specified end-points of a prospective multinational trial including 101 patients with VAP were analysed. Death <28 days after VAP onset was the primary end-point. MR-proANP and PCT were elevated at the onset of VAP in nonsurvivors compared with survivors (p = 0.003 and p = 0.017, respectively) and their slope of decline differed significantly (p = 0.018 and p = 0.039, respectively). Patients with the highest MR-proANP quartile at VAP onset were at increased risk for death (log rank p = 0.013). In a logistic regression model, MR-proANP was identified as the best predictor of survival. Adding MR-proANP and PCT to SAPS II and SOFA improved their predictive properties (area under the curve 0.895 and 0.880). We conclude that the combination of two biomarkers, MR-proANP and PCT, improve survival prediction of clinical severity scores in VAP.
Resumo:
MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.
Resumo:
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 representative pavement sites across Iowa were selected. The selected pavement sites represent flexible, rigid, and composite pavement systems throughout Iowa. The required MEPDG inputs and the historical performance data for the selected sites were extracted from a variety of sources. The accuracy of the nationally-calibrated MEPDG prediction models for Iowa conditions was evaluated. The local calibration factors of MEPDG performance prediction models were identified to improve the accuracy of model predictions. The identified local calibration coefficients are presented with other significant findings and recommendations for use in MEPDG/DARWin-ME for Iowa pavement systems.
Resumo:
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 representative pavement sites across Iowa were selected. The selected pavement sites represent flexible, rigid, and composite pavement systems throughout Iowa. The required MEPDG inputs and the historical performance data for the selected sites were extracted from a variety of sources. The accuracy of the nationally-calibrated MEPDG prediction models for Iowa conditions was evaluated. The local calibration factors of MEPDG performance prediction models were identified to improve the accuracy of model predictions. The identified local calibration coefficients are presented with other significant findings and recommendations for use in MEPDG/DARWin-ME for Iowa pavement systems.
Resumo:
On the basis of literature values, the relationship between fat-free mass (FFM), fat mass (FM), and resting energy expenditure [REE (kJ/24 h)] was determined for 213 adults (86 males, 127 females). The objectives were to develop a mathematical model to predict REE based on body composition and to evaluate the contribution of FFM and FM to REE. The following regression equations were derived: 1) REE = 1265 + (93.3 x FFM) (r2 = 0.727, P < 0.001); 2) REE = 1114 + (90.4 x FFM) + (13.2 x FM) (R2 = 0.743, P < 0.001); and 3) REE = (108 x FFM) + (16.9 x FM) (R2 = 0.986, P < 0.001). FM explained only a small part of the variation remaining after FFM was accounted for. The models that include both FFM and FM are useful in examination of the changes in REE that occur with a change in both the FFM and FM. To account for more of the variability in REE, FFM will have to be divided into organ mass and skeletal muscle mass in future analyses.
Resumo:
BACKGROUND: The Marburg Heart Score (MHS) aims to assist GPs in safely ruling out coronary heart disease (CHD) in patients presenting with chest pain, and to guide management decisions. AIM: To investigate the diagnostic accuracy of the MHS in an independent sample and to evaluate the generalisability to new patients. DESIGN AND SETTING: Cross-sectional diagnostic study with delayed-type reference standard in general practice in Hesse, Germany. METHOD: Fifty-six German GPs recruited 844 males and females aged ≥ 35 years, presenting between July 2009 and February 2010 with chest pain. Baseline data included the items of the MHS. Data on the subsequent course of chest pain, investigations, hospitalisations, and medication were collected over 6 months and were reviewed by an independent expert panel. CHD was the reference condition. Measures of diagnostic accuracy included the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, likelihood ratios, and predictive values. RESULTS: The AUC was 0.84 (95% confidence interval [CI] = 0.80 to 0.88). For a cut-off value of 3, the MHS showed a sensitivity of 89.1% (95% CI = 81.1% to 94.0%), a specificity of 63.5% (95% CI = 60.0% to 66.9%), a positive predictive value of 23.3% (95% CI = 19.2% to 28.0%), and a negative predictive value of 97.9% (95% CI = 96.2% to 98.9%). CONCLUSION: Considering the diagnostic accuracy of the MHS, its generalisability, and ease of application, its use in clinical practice is recommended.
Resumo:
The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.
Resumo:
Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.
Resumo:
Human inhibitor NF-κB kinase 2 (hIKK-2) is the primary component responsible for activating NF-κB in response to various inflammatory stimuli. Thus, synthetic ATP-competitive inhibitors for hIKK-2 have been developed as anti-inflammatory compounds. We recently reported a virtual screening protocol (doi:10.1371/journal.pone.0016903) that is able to identify hIKK-2 inhibitors that are not structurally related to any known molecule that inhibits hIKK-2 and that have never been reported to have anti-inflammatory activity. In this study, a stricter version of this protocol was applied to an in-house database of 29,779 natural products annotated with their natural source. The search identified 274 molecules (isolated from 453 different natural extracts) predicted to inhibit hIKK-2. An exhaustive bibliographic search revealed that anti-inflammatory activity has been previously described for: (a) 36 out of these 453 extracts; and (b) 17 out of 30 virtual screening hits present in these 36 extracts. Only one of the remaining 13 hit molecules in these extracts shows chemical similarity with known synthetic hIKK-2 inhibitors. Therefore, it is plausible that a significant portion of the remaining 12 hit molecules are lead-hopping candidates for the development of new hIKK-2 inhibitors.