876 resultados para Measured signals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abdominal pain can be induced by stimulation of visceral nociceptors. Activation of nociceptors usually requires previous sensitization by pathological events, such as inflammation, ischemia or acidosis. Although abdominal pain can obviously be caused by pathology of a visceral structure, clinicians frequently observe that such a pathology explains only part of the pain complaints. Occasionally, there is lack of objective signs of visceral lesions. There is clear evidence that pain states are associated with profound changes of the central processing of the sensory input. The main consequences of such alterations for patients are twofold: 1) a central sensitization, i.e. an increased excitability of the central nervous system; 2) an alteration of the endogenous pain modulation, which under normal conditions inhibits the processing of nociceptive signals in the central nervous system. Both phenomena lead to a spread of pain to other body regions and an amplification of the pain perception. The interactions between visceral pathology and alterations of the central pain processes represent an at least partial explanation for the discrepancy between objective signs of peripheral lesions and severity of the symptoms. Today, both central hypersensitivity and alteration in endogenous pain modulation can be measured in clinical practice. This information can be used to provide the patients with an explanatory model for their pain. Furthermore, first data suggest that alterations in central pain processing may represent negative prognostic factors. A better understanding of the individual pathophysiology may allow in the future the development of individual therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tenofovir disoproxil fumarate (TDF) has been associated with proximal renal tubulopathy and reduction in estimated glomerular filtration rate (eGFR), without accounting for the tubular secretion of creatinine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid bedside determination of cerebral blood pressure autoregulation (AR) may improve clinical utility. We tested the hypothesis that cerebral Hb oxygenation (HbDiff) and cerebral Hb volume (HbTotal) measured by near-infrared spectroscopy (NIRS) would correlate with cerebral blood flow (CBF) after single dose phenylephrine (PE). Critically ill patients requiring artificial ventilation and arterial lines were eligible. During rapid blood pressure rise induced by i.v. PE bolus, ΔHbDiff and ΔHbTotal were calculated by subtracting values at baseline (normotension) from values at peak blood pressure elevation (hypertension). With the aid of NIRS and bolus injection of indocyanine green, relative measures of CBF, called blood flow index (BFI), were determined during normotension and during hypertension. BFI during hypertension was expressed as percentage from BFI during normotension (BFI%). Autoregulation indices (ARIs) were calculated by dividing BFI%, ΔHbDiff, and ΔHbTotal by the concomitant change in blood pressure. In 24 patients (11 newborns and 13 children), significant correlations between BFI% and ΔHbDiff (or ΔHbTotal) were found. In addition, the associations between Hb-based ARI and BFI%-based ARI were significant with correlation coefficients of 0.73 (or 0.72). Rapid determination of dynamic AR with the aid of cerebral Hb signals and PE bolus seems to be reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study therefore aims to extend a previously reported frequency filtering technique to a spontaneously breathing cohort and assess the regional distributions of ventilation and perfusion and their relationship. Methods Ten healthy adults were measured during a breath hold and while spontaneously breathing in supine, prone, left and right lateral positions. EIT data were analysed with and without filtering at the respiratory and heart rate. Profiles of ventilation, perfusion and ventilation/perfusion related impedance change were generated and regions of ventilation and pulmonary perfusion were identified and compared. Results Analysis of the filtration technique demonstrated its ability to separate the ventilation and cardiac related impedance signals without negative impact. It was, therefore, deemed suitable for use in this spontaneously breathing cohort. Regional distributions of ventilation, perfusion and the combined ΔZV/ΔZQ were calculated along the gravity axis and anatomically in each position. Along the gravity axis, gravity dependence was seen only in the lateral positions in ventilation distribution, with the dependent lung being better ventilated regardless of position. This gravity dependence was not seen in perfusion. When looking anatomically, differences were only apparent in the lateral positions. The lateral position ventilation distributions showed a difference in the left lung, with the right lung maintaining a similar distribution in both lateral positions. This is likely caused by more pronounced anatomical changes in the left lung when changing positions. Conclusions The modified filtration technique was demonstrated to be effective in separating the ventilation and perfusion signals in spontaneously breathing subjects. Gravity dependence was seen only in ventilation distribution in the left lung in lateral positions, suggesting gravity based shifts in anatomical structures. Gravity dependence was not seen in any perfusion distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual recognition systems require the sender to be individually distinctive and the receiver to be able to perceive differences between individuals and react accordingly. Many studies have demonstrated that acoustic signals of almost any species contain individualized information. However, fewer studies have tested experimentally if those signals are used for individual recognition by potential receivers. While laboratory studies using zebra finches have shown that fledglings recognize their parents by their “distance call”, mutual recognition using the same call type has not been demonstrated yet. In a laboratory study with zebra finches, we first quantified between-individual acoustic variation in distance calls of fledglings. In a second step, we tested recognition of fledgling calls by parents using playback experiments. With a discriminant function analysis, we show that individuals are highly distinctive and most measured parameters show very high potential to encode for individuality. The response pattern of zebra finch parents shows that they do react to calls of fledglings, however they do not distinguish between own and unfamiliar offspring, despite individual distinctiveness. This finding is interesting in light of the observation of a high percentage of misdirected feedings in our communal breeding aviaries. Our results demonstrate the importance of adopting a receiver's perspective and suggest that variation in fledgling contact calls might not be used in individual recognition of offspring.