969 resultados para Matrix Effects
Resumo:
Chondroitin sulfate proteoglycans display both inhibitory and stimulatory effects on cell adhesion and neurite outgrowth in vitro. The functional activity of these proteoglycans appears to be context specific and dependent on the presence of different chondroitin sulfate-binding molecules. Little is known about the role of chondroitin sulfate proteoglycans in the growth and guidance of axons in vivo. To address this question, we examined the effects of exogenous soluble chondroitin sulfates on the growth and guidance of axons arising from a subpopulation of neurons in the vertebrate brain which express NOC-2, a novel glycoform of the neural cell adhesion molecule N-CAM. Intact brains of stage 28 Xenopus embryos were unilaterally exposed to medium containing soluble exogenous chondroitin sulfates. When exposed to chondroitin sulfate, NOC-2(+) axons within the tract of the postoptic commissure failed to follow their normal trajectory across the ventral midline via the ventral commissure in the midbrain. Instead, these axons either stalled or grew into the dorsal midbrain or continued growing longitudinally within the ventral longitudinal tract. These findings suggest that chondroitin sulfate proteoglycans indirectly modulate the growth and guidance of a subpopulation of forebrain axons by regulating either matrix-bound or cell surface cues at specific choice points within the developing vertebrate brain. (C) 1998 Academic Press.
Resumo:
Introduction: This paper reviews studies of physical activity interventions in health care settings to determine effects on physical activity and/or fitness and characteristics of successful interventions. Methods: Studies testing interventions to promote physical activity in health care settings for primary prevention (patients without disease) and secondary prevention (patients with cardiovascular disease [CVD]) were identified by computerized search methods and reference lists of reviews and articles. Inclusion criteria included assignment to intervention and control groups, physical activity or cardiorespiratory fitness outcome measures, and, for the secondary prevention studies, measurement 12 or more months after randomization. The number of studies with statistically significant effects was determined overall as well as for studies testing interventions with various characteristics. Results: Twelve studies of primary prevention were identified, seven of which were randomized. Three of four randomized studies with short-term measurement (4 weeks to 3 months after randomization), and two of five randomized studies with long-term measurement (6 months after randomization) achieved significant effects on physical activity. Twenty-four randomized studies of CVD secondary prevention were identified; 13 achieved significant effects on activity and/or fitness at twelve or more months. Studies with measurement at two time points showed decaying effects over time, particularly if the intervention were discontinued. Successful interventions contained multiple contacts, behavioral approaches, supervised exercise, provision of equipment, and/or continuing intervention. Many studies had methodologic problems such as low follow-up rates. Conclusion: Interventions in health care settings can increase physical activity for both primary and secondary prevention. Long-term effects are more likely with continuing intervention and multiple intervention components such as supervised exercise, provision of equipment, and behavioral approaches. Recommendations for additional research are given.
Resumo:
Cannabis is the most widely used illicit drug in many developed societies. Its health and psychological effects are not well understood and remain the subject of much debate, with opinions on its risks polarised along the lines of proponents' views on what its legal status should be. An unfortunate consequence of this polarisation of opinion has been the absence of any consensus on what health information the medical profession should give to patients who are users or potential users of cannabis. There is conflicting evidence about many of the effects of cannabis use, so we summarise the evidence on the most probable adverse health and psychological consequences of acute and chronic use. This uncertainty, however, should not prevent medical practitioners from advising patients about the most likely ill-effects of their cannabis use. Here we make some suggestions about the advice doctors can give to patients who use, or are contemplating the use, of this drug.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
We examined the effect of age-specific fecundity, mated status, and egg load on host-plant selection, by Helicoverpa armigera under laboratory conditions. The physiological state of a female moth (number of mature eggs produced) greatly influences her host-plant specificity and propensity to oviposit (oviposition motivation). Female moths were less discriminating against cowpea (a low-ranked host) relative to maize (a high-ranked host) as egg load increased. Similarly, increased egg load led to a greater propensity to oviposit on both cowpea and maize. Distribution of oviposition with age of mated females peaked shortly after mating and declined steadily thereafter until death. Most mated females (88%) carried only a single spermatophore, a few females (12%) contained two. The significance of these findings in relation to host-plant selection by H. armigera, and its management, are discussed.
Resumo:
Objectives This study examines the direct and mediated effects of shift workers' coping strategies and social support on structural work-nonwork conflict and subjective health. Methods The participants were 172 registered female nurses, aged 21 to 40 years. They all worked full-time, on rapidly rotating, 8-hour shifts in metropolitan general hospitals. All the respondents completed a self-administered questionnaire requesting demographic information and data on sources of social support, work-nonwork conflict, and coping strategies. Results A path model with good fit (chi(2)=28.88, df=23, P>.23, CFI=0.97) demonstrated complex effects of social support and coping on structural work-nonwork conflict and health. Conclusions Structural work-nonwork conflict mediated the effects of social support from supervisors and emotionally expressive coping on psychological symptoms. Control of shifts mediated the effect of social support from supervisors on structural work-nonwork conflict. Disengagement coping had direct and mediated effects on psychological and physical health. However, it also had mediated effects, with the effect on psychological health being mediated by support from co-workers and the effect on physical symptoms being mediated by family support. Go-worker support mediated the effect of social support from supervisors on psychological symptoms. Overall, these findings support previous research and clarify the process by which coping strategies and social support affect structural work-nonwork conflict and health in shift work.
Resumo:
Krylov subspace techniques have been shown to yield robust methods for the numerical computation of large sparse matrix exponentials and especially the transient solutions of Markov Chains. The attractiveness of these methods results from the fact that they allow us to compute the action of a matrix exponential operator on an operand vector without having to compute, explicitly, the matrix exponential in isolation. In this paper we compare a Krylov-based method with some of the current approaches used for computing transient solutions of Markov chains. After a brief synthesis of the features of the methods used, wide-ranging numerical comparisons are performed on a power challenge array supercomputer on three different models. (C) 1999 Elsevier Science B.V. All rights reserved.AMS Classification: 65F99; 65L05; 65U05.
Resumo:
A variable-density groundwater model is used to analyse the effects of tidal fluctuations on sea-water intrusion in an unconfined aquifer. It is shown that the tidal activity forces the sea-water to intrude further inland and it also creates a thicker interface than would occur without tidal effects. Moreover, the configuration of the interface is radically changed when the tidal fluctuations are included. This is because of the dramatic changes in the flow pattern and velocity of the groundwater near the shoreline. For aquifer depths much larger than tidal amplitudes, the tidal fluctuation does not have much effect on how far the sea-water intrudes into the aquifer; nevertheless, a significant change in the configuration of concentration contours because of the effect of tidal fluctuations is observed. This change is more noticeable at the top of the aquifer, near the water table, than at the bottom of the aquifer, and is caused by the infiltration of salt water into the top of the aquifer at higher tidal levels. A flatter beach slope, therefore, intensifies this phenomenon. The interface configurations do not change noticeably over the course of a tidal cycle. Neglecting tidal fluctuation effects results in an inaccurate evaluation of the water table elevation at the land end of the aquifer, although no distinguishable difference is seen between the water tables near the shoreline. Where the landward boundary condition is a constant head, the effects of tidal fluctuations on sea-water intrusion are more pronounced than for cases where the landward boundary condition is a specified flux. Also it is shown that the effects of tidal fluctuations are more significant for a sloping beach than for a vertical shoreline and the salt water intrudes further inland for the sloping case. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Abnormal lower-limb biomechanics-in particular, abnormal pronation of the subtalar joint with concomitant increased internal rotation of the tibia-is one of the major causes of overuse injuries of the lower limb. A randomized, controlled, within-subjects research design (N = 14) was used to investigate the effect of a temporary felt orthosis and an antipronation taping technique to control the transverse tibial rotation position immediately after application and after each of two 10-minute periods of exercise. The results showed that the taping technique was superior to both the orthosis and no intervention in controlling tibial rotation position immediately after application and after 10 minutes of exercise. After 20 minutes of exercise, neither the tape nor the orthosis was significantly superior to the control; however, the trends suggested that some residual control was maintained. Future studies are needed to determine the amount of foot pronation control required to relieve symptoms in a symptomatic population in order to determine the clinical effectiveness of these treatment methods.
Resumo:
Modulated chlorophyll fluorescence techniques were used to examine the effects of cyanide (NaCN) from cyanide fishing on photosynthesis of the symbiotic algae (zooxanthellae) located within the tissues of the zooxanthellate hard coral Plesiastrea versipora. Incubating corals for 3 h in a cyanide concentration of >10(-5) M NaCN under a saturating light intensity (photosynthetically active radiation [PAR] intensity of 250 mu mol quanta m(-2) s(-1)) caused a long-term decrease in the ratio of variable to maximal fluorescence (dark-adapted F-v/F-m). The effect of cyanide on dark-adapted F-v/F-m was Light dependent; thus F-v/F-m only decreased in corals exposed to 10(-4) M NaCN for 3 h under PAR of 250 mu mol quanta m(-2) s(-1). In corals where dark-adapted F-v/F-m was significantly lowered by cyanide exposure, we observed significant loss of zooxanthellae from the tissues. causing the corals to discolour (bleach). To further examine the light-dependent effect of cyanide and its relation to loss of zooxanthellae, corals were exposed to 10-4 M NaCN or seawater only (control), either in darkness or under 250 mu mol quanta m(-2) s(-1). ill significant decrease in dark-adapted F-v/F-m and loss of zooxanthellae only occurred in corals exposed to cyanide in the light. These results suggest cyanide causes the dissociation of the symbiosis (bleaching) by affecting photosynthesis of the zooxanthellae. Quenching analysis using the saturation-pulse technique revealed the development of high levels of non-photochemical quenching in cyanide-exposed coral. This result is consistent with the known property of cyanide as an inhibitor of the dark reactions of the Calvin cycle, specifically as an inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Therefore, chronic photoinhibition and an impairment of photosynthesis of zooxanthellae provides an important 'signal' to examine the environmental effects of cyanide fishing during controlled releases in situ.
Resumo:
Mechanically skinned skeletal muscle fibres from rat and toad were exposed to the permeabilizing agents beta-escin and saponin. The effects of these agents on the sealed transverse tubular system (t-system) and sarcoplasmic reticulum (SR) were examined by looking at changes in the magnitude of the force responses to t-system depolarization, the time course of the fluorescence of fura-2 trapped in the sealed t-system, and changes in the magnitude of caffeine-induced contractures following SR loading with Ca2+ under defined conditions. In the presence of 2 mu g ml(-1) beta-escin and saponin, the response to t-system depolarization was not completely abolished, decreasing to a plateau, and a large proportion of fura-2 remained in the sealed t-system. At 10 mu g ml(-1), both agents abolished the ability of both rat and toad preparations to respond to t-system depolarization after 3 min of exposure, but a significant amount of fura-2 remained in sealed t-tubules even after exposure to 100 mu g ml(-1) beta-escin and saponin for 10 min. beta-Escin took longer than saponin to reduce the t-system depolarizations and fura-2 content of the sealed t-system to a similar level. The ability of the SR to load Ca2+ was reduced to a lower level after treatment with beta-escin than saponin. This direct effect on the SR occurred at much lower concentrations for rat (2 mu g ml(-1) beta-escin and 10 mu g ml(-1) saponin) than toad (10 mu g ml(-1) beta-escin and 150 mu g ml(-1) saponin). The reverse order in sensitivities to beta-escin and saponin of t-system and SR membranes indicates that the mechanisms of action of beta-escin and saponin are different in the two types of membrane. In conclusion, this study shows that: (1) beta-escin has a milder action on the surface membrane than saponin; (2) beta-escin is a more potent modifier of SR function; (3) simple permeabilization of membranes is not sufficient to explain the effects of beta-escin and saponin on muscle membranes; and (4) the t-system network within muscle fibres is not a homogeneous compartment.
Resumo:
We tested the effects of four data characteristics on the results of reserve selection algorithms. The data characteristics were nestedness of features (land types in this case), rarity of features, size variation of sites (potential reserves) and size of data sets (numbers of sites and features). We manipulated data sets to produce three levels, with replication, of each of these data characteristics while holding the other three characteristics constant. We then used an optimizing algorithm and three heuristic algorithms to select sites to solve several reservation problems. We measured efficiency as the number or total area of selected sites, indicating the relative cost of a reserve system. Higher nestedness increased the efficiency of all algorithms (reduced the total cost of new reserves). Higher rarity reduced the efficiency of all algorithms (increased the total cost of new reserves). More variation in site size increased the efficiency of all algorithms expressed in terms of total area of selected sites. We measured the suboptimality of heuristic algorithms as the percentage increase of their results over optimal (minimum possible) results. Suboptimality is a measure of the reliability of heuristics as indicative costing analyses. Higher rarity reduced the suboptimality of heuristics (increased their reliability) and there is some evidence that more size variation did the same for the total area of selected sites. We discuss the implications of these results for the use of reserve selection algorithms as indicative and real-world planning tools.
Resumo:
In this paper, a solution method is presented to deal with fully coupled problems between medium deformation, pore-fluid flow and heat transfer in fluid-saturated porous media having supercritical Rayleigh numbers. To validate the present solution method, analytical solutions to a benchmark problem are derived for some special cases. After the solution method is validated, a numerical study is carried out to investigate the effects of medium thermoelasticity on high Rayleigh number steady-state heat transfer and mineralization in fluid-saturated media when they are heated from below. The related numerical results have demonstrated that: (1) medium thermoelasticity has a little influence on the overall pattern of convective pore-fluid flow, but it has a considerable effect on the localization of medium deformation, pore-fluid flow, heat transfer and mineralization in a porous medium, especially when the porous medium is comprised of soft rock masses; (2) convective pore-fluid flow plays a very important role in the localization of medium deformation, heat transfer and mineralization in a porous medium. (C) 1999 Elsevier Science S.A. All rights reserved.