938 resultados para Materials at high temperatures
Resumo:
Thermal spray coatings as Cr3C2-NiCr obtained by high velocity oxy-fuel spraying (HVOF) are mainly applied due to their behaviour against aggressive erosive-abrasive and corrosive atmospheres and their thermal stability at high temperatures [1]. In order to increase the corrosion protection that it offers to the substrate trying to close the interconnected pores, it is possible to apply a thermal treatment with the gun during the spraying of the coating. This treatment could be applied in different ways. One of these ways consists of spraying only a few layers of coating followed by thermal treatment and finally the spray of the rest of layers. This thermal treatment on spraying is studied related to the corrosion properties of the system. The study comprises the electrochemical characterisation of the system by open circuit potential (OC), polarisation resistance (Rp), cyclic voltammetry (CV) and impedance spectroscopy measurements (EIS). Optical and scanning electron microscopy characterisation (OM and SEM) of the top and cross-section of the system has been used in order to justify the electrochemical results.
Resumo:
The Amazonian regions are characterized by large space-time variability in the humidity fields due to the intense convective process in those areas associated with the great humidity potential generated by high temperatures. An experiment denominated RACCI/DRY-TO-WET (RAdiation, Cloud, and Climate Interactions in the Amazonia during the DRY-TO-WET Transition Season) was carried out in the Brazilian Amazonian Region in 2002. The IWV values from GPS and other techniques, such as radiosondes, radiometer and humidity sounding satellites were used in this experiment to supply subsidies to evaluate the aerosols influence in the associated processes modifications to seasonality of atmospheric water vapor. Those regions are one of the most humid of the planet, where IWV (Integrated Water Vapor) average values are in the order of 50 kg/m2. As according the literature the IWV quantification using GPS has not been explored in those circumstances, the objective this paper is to present the preliminary results obtained in the evaluation of the GPS performance in Amazonian Regions when comparing with other techniques. The tendency measurement values indicated that the IWV values from GPS tend to be larger than those from radiosondes and smaller than those from radiometer. On the other hand, IWV values from GPS are very close of the average values supplied by radiosondes and radiometer. Due to the great amount of atmospheric water vapor existent in this region, the results obtained in the experiment in percentile terms are quite better than those found in the literature, which are around of 10%.
Resumo:
The steam reforming is one of most utilized process of hydrogen production because of its high production efficiencies and its technological maturity. The use of ethanol for this purpose is a interesting option because this is a renewable and less environmentally offensive fuel. The objective of this study is evaluate the physical-chemical, thermodynamic and environmental analyses of steam reforming of ethanol. whose objective is to produce 0.7 Nm3/h of hydrogen to be used by a PEMFC of l kW. In this physical-chemical analysis, a global reaction of ethanol was considered. That is, the superheated ethanol and steam, at high temperatures, react to produce hydrogen and carbon dioxide. Beyond it's the simplest form to study the steam reforming of ethanol to hydrogen production, it's the case where occurs the highest production of hydrogen (the product to be used by fuel cells) and carbon dioxide, to be eliminated. But this reaction isn't real and depends greatly on the thermodynamic conditions of reforming, technical features of reformer system and catalysts. Other products generally formed (but not investigated in this study) are methane, carbon monoxide, among others. It was observed that the products is commonly produced in the moment when the reaction attains temperatures about 206°C (below this temperature, the reaction trend to the reaetants, that is, from hydrogen and carbon dioxide to steam and ethanol) and the advance degree of this reaction increases when the temperature of reaction also increases and when its pressure decreases. It's suggested reactions at about 600°C or higher. However, when the temperature attains 700°C, the stability of this reaction is occurred, that is, the production of reaction productions attains to the limit, that is the highest possible production. In temperatures above 700°C, the use of energy is very high for produce more products, having higher costs of production that the suggested temperature. The indicated pressure is 1 atm., a value that allows a desirable economy of energy that would also be used for pressurization or depressurization of steam reformer. In exergetic analysis, it's seem that the lower irreversibililies occur when the pressure of reactions are lower. However, the temperature changes don't affect significantly the irreversibilites. Utilizing the obtained results from this analysis, it was concluded that the best thermodynamic conditions for steam reforming of ethanol is the same conditions suggested in the physical-chemical analysis. The exergetic and first law efficiencies are high on the thermodynamie conditions studied.
Resumo:
This study aimed to detect quantitative trait loci (QTL) by fALP (Fluorescent Amplified Fragment Length Polymorphism) markers associated to the trait tomato fruit set at high temperatures. A biparental cross between line Jab-95 (heat-tolerant) and cultivar Caribe (heat-susceptible) was made. A total of 192 plants of the F2 generation were evaluated, generating 172 polymorphic markers through six primer combinations previously identified by the Bulked Segregant Analysis technique. To construct the genetic map, 106 of the 172 markers that segregated in the expected Mendelian segregation proportion (3:1) were used. The map covered 1191.46 cM of the genome. Six trait-linked QTL were identified in the analysis of simple markers and three others by the interval-mapping methodology. These results could be highly useful in improvement programs, since heat-tolerant plants can be selected rapidly, which improves tomato fruit set.
Resumo:
This work was aimed at evaluating the antioxidant activity of rosemary extract added to soybean oil in thermoxidation conditions. Purified soybean oil, refined soybean oil and refined soybean oil containing 1,000 mg/kg rosemary extract were heated at 180°C. The oxidation of the samples was evaluated after 0, 2.5, 5, 7.5 and 10 hours of thermoxidation by means of oxidative stability determination, total polar compounds and conjugated dienes. The purified oil differed significantly from the refined oil, mainly in relation to oxidative stability due the removal of the natural antioxidants. Rosemary extract presented antioxidant effects at high temperatures. After 10 hours of heating, 1,000 mg/kg rosemary extract added to the refined soybean oil significantly increased the oil oxidative stability from 7.52 to 13.5 hours and decreased the formation of polymers and decomposing products measured through the polar rates from 17.35 to 7.99%. The build up of primary oxidation products gauged through diene rates also decreased from 1.61 to 0.80%. Rosemary extract could be recommended as an alternative antioxidant.
Resumo:
In places characterized with high temperatures and rain occurrence in great intensity in the summer, but with dry winter, the major limitations for the sustainability of no tillage systems are low production of straw during fall-spring period and the fast decomposition during the rain season. To try to solve the problem, intercropped cultures of grains with forage species has presented reliable results; because offer vegetal covering to the next sowing, giving sustainability to the no tillage system. However, being a recent technology, its needed further studies in different areas involved for this system of production. Thus, this study had the objective 1) to evaluate the production of corn grain at different periods of intercropping with Brachiaria brizantha and Panicum maximum in no tillage system, and 2) aimed to evaluate the performance of forage at different periods of intercropping and the responses to nitrogen fertilization after the harvest of the corn, assessing mass productivity and quality. The experiment was carried out at the Lageado experimental farm, School of Agricultural Sciences, Botucatu campus belonged to São Paulo State University (UNESP) in structuralized Red Nitosol (Afisol). The experimental design was randomized blocks with four replications. The treatments were composed for four systems of no tillage involving corn: 1) single corn; 2) corn with Brachiaria brizantha cv. Marandu intercropped in the sowing; 3) corn with Brachiaria brizantha cv. Marandu intercropped with the fertilization of covering; 4) corn with Panicum maximum cv. Mombaça intercropped in the sowing and 5) corn with Panicum maximum cv. Mombaça intercropped with the fertilization of covering. After the harvest of the corn, it was applied, in equivalent quantities of nitrogen, ammonium nitrate in covering in doses of 0, 30, 60 and 120 kg ha-1, determining the forage mass productivity and quality. The simultaneous tillage of corn with P. maximum cv. Mombaça in the sowing compromises the grain productivity. When sowed in intercropping, B. brizantha presents a fiber concentration reduction and greater TDN concentration during the fall-spring period. Regarding benefits of intercropped cultures seeking to use in systems of production like agriculture-pasture integration, the best intercropping to be utilized is corn sown simultaneously with B. brizantha cv. Marandu.
Resumo:
The synergistic effect of lemon seed extract with tert-butylhydroquinone (TBHQ) in soybean oil subjected to thermoxidation by Rancimat was investigated, and the influence of these antioxidants on α-tocopherol degradation in thermoxidized soybean oil. Control, LSE (2,400 mg/kg Lemon Seed Extract), TBHQ (50 mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180°C for 20 h. Samples were taken at time 0, 5, 10, 15 and 20 h intervals and analysed for oxidative stability and α-tocopherol content. LSE and Mixtures 1 and 2 showed the capacity of retarding lipid oxidation when added to soya oil and also contributed to α-tocopherol retention in oil heated at high temperatures. However, Mixtures 1 and 2 added to the oil presented a greater antioxidant power, consequently proving the antioxidants synergistic effect.
Resumo:
This experiment analyzed the effect of sex and incubation temperature on daily mass loss and eggshell conductance, embryo mortality rates, incubation duration, hematological parameters and body, liver, heart and bursa weights of neonatal chicks from young breeders. The daily mass loss was higher at incubation temperature of 39°C. The eggshell conductance rate increased with the temperature. The total and partial duration of incubation were lower for eggs incubated at 39°C. The time taken by the chick to leave the eggshell did not differ below and above the thermoneutral temperature. The total and intermediate embryo mortality rates increased with the incubation temperature, whereas the early and late embryo mortality rates were higher at incubation temperature of 39°C. Sex did not influence the analyzed parameters, while the incubation temperature did not affect the body and bursa weight and the erythrocytes characteristics. The liver weight of chicks incubated at 36°C was higher than the incubated at 39°C, however there were no differences among the liver weight from chicks incubated at 36 and 39°C and those incubated at 37.5°C. The number of heterophils and the heterophil/lymphocyte ratio (H/L ratio) increased following the temperature, whereas the number of lymphocytes decreased at high temperatures. The other leukocyte parameters did not suffer influence of temperature. Males and females presented similar response to variation of incubation temperatures (36, 37.5 and 39°C) and demonstrated higher sensibility to temperatures above the thermoneutral. Moreover, temperatures below the thermoneutral demonstrated to be better for improvement of hatchability and development of chicks from light eggs. © Asian Network for Scientific Information, 2010.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Plasma electrolytic oxidation (PEO) is a coating procedure that utilises anodic oxidation in aqueous electrolytes above the dielectric breakdown voltage to produce oxide coatings that have specific properties. These conditions facilitate oxide formation under localised high temperatures and pressures that originate from short-lived microdischarges at sites over the metal surface and have fast oxide volume expansion. Anodic ZrO2 films were prepared by subjecting metallic zirconium to PEO in acid solutions (H2C 2O4 and H3PO4) using a galvanostatic DC regime. The ZrO2 microstructure was investigated in films that were prepared at different charge densities. During the anodic breakdown, an important change in the amplitude of the voltage oscillations at a specific charge density was observed (i.e., the transition charge density (Q T)). We verified that this transition charge is a monotonic function of both the current density and temperature applied during the anodisation, which indicated that Q T is an intrinsic response of this system. The oxide morphology and microstructure were characterised using SEM and X-ray diffraction experiments (XRD) techniques. X-ray diffraction analysis revealed that the change in voltage oscillation was correlated with oxide microstructure changes during the breakdown process. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
In this paper, we demonstrate that the intrinsic electric field created by a poly(o-methoxyaniline) (POMA) cushion layer hinders the changes in molecular conformation of poly(p-phenylenevinylene) (PPV) in layer-by-layer with dodecylbenzene sulfonic acid (DBS). This was modeled with density functional theory (DFT) calculations where an energy barrier hampered molecular movements of PPV segments when they were subjected to an electric field comparable to that caused by a charged POMA layer. With restricted changes in molecular conformation, the PPV film exhibited Franck-Condon transitions and the photoexcitation spectra resembled the absorption spectra, in contrast to PPV/DBS films deposited directly on glass, with no POMA cushion. Other effects from the POMA cushion were the reduced number of structural defects, confirmed with Raman spectroscopy, and an enhanced PPV emission at high temperatures (300 K) in comparison with the films on bare glass. The positive effects from the POMA cushion may be exploited for enhanced opto-electronic devices, especially as the intrinsic electric field may assist in separating photoexcited electron-hole pairs in photovoltaic devices. © 2013 American Institute of Physics.
Resumo:
Germination parameters of the response to temperature and water potential from four common bean (Phaseolus vulgaris) lines based on thermal-time and hydrotime concepts were estimated to verify to what extent they can predict germination under different thermal and water conditions. The cultivars IPR Uirapuru and IAPAR 81 (drought-tolerant), and Grauna and Carioca (not tolerant) were used. The isothermal assays were performed in a temperature gradient block, and the assays with different osmotic potentials (PEG 6000) were performed in germination chambers. Seeds from drought-tolerant cultivars spent less time to germinate at supra-optimum temperatures than non-tolerant ones, and the cultivar Uirapuru (drought-tolerant) germinated faster in response to reduced Ψ and low temperatures. The parameter Ψb(50) did not discriminate between drought-tolerant and non-tolerant lines at the infraoptimum temperature range, but it can be used to identify drought-tolerant lines at high temperatures. In general, the hydrotime model reproduced the actual germination data relatively well, chiefly at higher temperatures. This study evidenced that the hydrotime model can be used to describe the germination of common bean seeds under reduced water potentials, and as a screening tool for drought-tolerant bean genotypes.
Resumo:
Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Human eyes have a remarkable ability to recognize hundreds of colour shades, which has stimulated the use of colorants, especially for clothing, but toxicological studies have shown that some textile dyes can be hazardous to human health. Under conditions of intense perspiration, dyes can migrate from coloured clothes and penetrate into human skin. Garments made from cotton fabrics are the most common clothing in tropical countries, due to their high temperatures. Aiming to identify safe textile dyes for dyeing cotton fabrics, the genotoxicity [in vitro Comet assay with normal human dermal fibroblasts (NHDF), Tail Intensity] and mutagenicity [Salmonella/microsome preincubation assay (30 min), tester strains TA98, TA100, YG1041 and YG1042] of Reactive Blue 2 (RB2, CAS No. 12236-82-7, C.I. 61211) and Reactive Green 19 (RG19, CAS No. 61931-49-5, C.I. 205075) were evaluated both in the formulated form and as extracted from cotton fibres using different artificial sweats. Both the dyes could migrate from cotton fibres to sweat solutions, the sweat composition and pH being important factors during this extraction. However, the dye sweat solutions showed no genotoxic/mutagenic effects, whereas a weak mutagenic potential was detected by the Ames test for both dyes in their formulated form. These findings emphasize the relevance of textile dyes assessment under conditions that more closely resemble human exposure, in order to recognize any hazard. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Stranding of oceanic-pelagic elasmo branchs in the southeastern Brazil are reported. Data comes from animals observed in the coast of São Paulo state, between 1999 and 2012. Nine individuals of two species were recorded: Pteroplatytrygon violacea (n = 5; mostly during the winter) and Isurus oxyrinchus (n = 4; two in the winter and two in the summer). For P. violacea the strandings restricted to the austral winter suggest that the species follows the intrusion of high temperatures water masses recorded in southeastern Brazil during this season, bringing some individuals to shallow waters. For I. oxyrinchus is possible that individuals escaped from hooks of the commercial pelagic long line fishery and suffered injuries in the esophagus and in the gastric wall, stranding due to difficulties in locomotion and feeding. As these stranded sharks were not necropsied and only two animals were observed during the austral summer, we cannot exclude other causes of beaching such diseases or the intrusion of cold water masses in the continental shelf during this season.