993 resultados para Mark correlation functions
Resumo:
Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.
Resumo:
Knowledge of the soil water retention curve (SWRC) is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs), which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972), Lal (1979), Aina & Periaswamy (1985), Arruda et al. (1987), Dijkerman (1988), Vereecken et al. (1989), Batjes (1996), van den Berg et al. (1997), Tomasella et al. (2000), Hodnett & Tomasella (2002), Oliveira et al. (2002), and Barros (2010). We used a database that includes soil texture (sand, silt, and clay), bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000) achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980) model, especially when tested in the top soil layer.
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.
Resumo:
Taking into account the nature of the hydrological processes involved in in situ measurement of Field Capacity (FC), this study proposes a variation of the definition of FC aiming not only at minimizing the inadequacies of its determination, but also at maintaining its original, practical meaning. Analysis of FC data for 22 Brazilian soils and additional FC data from the literature, all measured according to the proposed definition, which is based on a 48-h drainage time after infiltration by shallow ponding, indicates a weak dependency on the amount of infiltrated water, antecedent moisture level, soil morphology, and the level of the groundwater table, but a strong dependency on basic soil properties. The dependence on basic soil properties allowed determination of FC of the 22 soil profiles by pedotransfer functions (PTFs) using the input variables usually adopted in prediction of soil water retention. Among the input variables, soil moisture content θ (6 kPa) had the greatest impact. Indeed, a linear PTF based only on it resulted in an FC with a root mean squared residue less than 0.04 m³ m-3 for most soils individually. Such a PTF proved to be a better FC predictor than the traditional method of using moisture content at an arbitrary suction. Our FC data were compatible with an equivalent and broader USA database found in the literature, mainly for medium-texture soil samples. One reason for differences between FCs of the two data sets of fine-textured soils is due to their different drainage times. Thus, a standardized procedure for in situ determination of FC is recommended.
Resumo:
The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT) and conventional tillage (CT) systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.
Resumo:
We study the motion of an unbound particle under the influence of a random force modeled as Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint and marginal probability density functions and find the associated solutions. We analyze in detail anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and explore possible connections between dynamical exponents of the variance and the fractal dimension of the trajectories.
Resumo:
Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland) forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2) and Akaike information criterion (AIC) and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.
Resumo:
Mitochondrial dysfunction is one of the possible mechanisms by which azole resistance can occur in Candida glabrata. Cells with mitochondrial DNA deficiency (so-called "petite mutants") upregulate ATP binding cassette (ABC) transporter genes and thus display increased resistance to azoles. Isolation of such C. glabrata mutants from patients receiving antifungal therapy or prophylaxis has been rarely reported. In this study, we characterized two sequential and related C. glabrata isolates recovered from the same patient undergoing azole therapy. The first isolate (BPY40) was azole susceptible (fluconazole MIC, 4 μg/ml), and the second (BPY41) was azole resistant (fluconazole MIC, >256 μg/ml). BPY41 exhibited mitochondrial dysfunction and upregulation of the ABC transporter genes C. glabrata CDR1 (CgCDR1), CgCDR2, and CgSNQ2. We next assessed whether mitochondrial dysfunction conferred a selective advantage during host infection by testing the virulence of BPY40 and BPY41 in mice. Surprisingly, even with in vitro growth deficiency compared to BPY40, BPY41 was more virulent (as judged by mortality and fungal tissue burden) than BPY40 in both systemic and vaginal murine infection models. The increased virulence of the petite mutant correlated with a drastic gain of fitness in mice compared to that of its parental isolate. To understand this unexpected feature, genome-wide changes in gene expression driven by the petite mutation were analyzed by use of microarrays during in vitro growth. Enrichment of specific biological processes (oxido-reductive metabolism and the stress response) was observed in BPY41, all of which was consistent with mitochondrial dysfunction. Finally, some genes involved in cell wall remodelling were upregulated in BPY41 compared to BPY40, which may partially explain the enhanced virulence of BPY41. In conclusion, this study shows for the first time that mitochondrial dysfunction selected in vivo under azole therapy, even if strongly affecting in vitro growth characteristics, can confer a selective advantage under host conditions, allowing the C. glabrata mutant to be more virulent than wild-type isolates.
Resumo:
Résumé: Les récents progrès techniques de l'imagerie cérébrale non invasives ont permis d'améliorer la compréhension des différents systèmes fonctionnels cérébraux. Les approches multimodales sont devenues indispensables en recherche, afin d'étudier dans sa globalité les différentes caractéristiques de l'activité neuronale qui sont à la base du fonctionnement cérébral. Dans cette étude combinée d'imagerie par résonance magnétique fonctionnelle (IRMf) et d'électroencéphalographie (EEG), nous avons exploité le potentiel de chacune d'elles, soit respectivement la résolution spatiale et temporelle élevée. Les processus cognitifs, de perception et de mouvement nécessitent le recrutement d'ensembles neuronaux. Dans la première partie de cette thèse nous étudions, grâce à la combinaison des techniques IRMf et EEG, la réponse des aires visuelles lors d'une stimulation qui demande le regroupement d'éléments cohérents appartenant aux deux hémi-champs visuels pour en faire une seule image. Nous utilisons une mesure de synchronisation (EEG de cohérence) comme quantification de l'intégration spatiale inter-hémisphérique et la réponse BOLD (Blood Oxygenation Level Dependent) pour évaluer l'activité cérébrale qui en résulte. L'augmentation de la cohérence de l'EEG dans la bande beta-gamma mesurée au niveau des électrodes occipitales et sa corrélation linéaire avec la réponse BOLD dans les aires de VP/V4, reflète et visualise un ensemble neuronal synchronisé qui est vraisemblablement impliqué dans le regroupement spatial visuel. Ces résultats nous ont permis d'étendre la recherche à l'étude de l'impact que le contenu en fréquence des stimuli a sur la synchronisation. Avec la même approche, nous avons donc identifié les réseaux qui montrent une sensibilité différente à l'intégration des caractéristiques globales ou détaillées des images. En particulier, les données montrent que l'implication des réseaux visuels ventral et dorsal est modulée par le contenu en fréquence des stimuli. Dans la deuxième partie nous avons a testé l'hypothèse que l'augmentation de l'activité cérébrale pendant le processus de regroupement inter-hémisphérique dépend de l'activité des axones calleux qui relient les aires visuelles. Comme le Corps Calleux présente une maturation progressive pendant les deux premières décennies, nous avons analysé le développement de la fonction d'intégration spatiale chez des enfants âgés de 7 à 13 ans et le rôle de la myelinisation des fibres calleuses dans la maturation de l'activité visuelle. Nous avons combiné l'IRMf et la technique de MTI (Magnetization Transfer Imaging) afin de suivre les signes de maturation cérébrale respectivement sous l'aspect fonctionnel et morphologique (myelinisation). Chez lés enfants, les activations associées au processus d'intégration entre les hémi-champs visuels sont, comme chez l'adulte, localisées dans le réseau ventral mais se limitent à une zone plus restreinte. La forte corrélation que le signal BOLD montre avec la myelinisation des fibres du splenium est le signe de la dépendance entre la maturation des fonctions visuelles de haut niveau et celle des connections cortico-corticales. Abstract: Recent advances in non-invasive brain imaging allow the visualization of the different aspects of complex brain dynamics. The approaches based on a combination of imaging techniques facilitate the investigation and the link of multiple aspects of information processing. They are getting a leading tool for understanding the neural basis of various brain functions. Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. In this research, we explore the characteristics of interhemispheric assemblies in the visual brain by taking advantage of the complementary characteristics provided by EEG (electroencephalography) and fMRI (Functional Magnetic Resonance Imaging) techniques. These are the high temporal resolution for EEG and high spatial resolution for fMRI. In the first part of this thesis we investigate the response of the visual areas to the interhemispheric perceptual grouping task. We use EEG coherence as a measure of synchronization and BOLD (Blood Oxygenar tion Level Dependent) response as a measure of the related brain activation. The increase of the interhemispheric EEG coherence restricted to the occipital electrodes and to the EEG beta band and its linear relation to the BOLD responses in VP/V4 area points to a trans-hemispheric synchronous neuronal assembly involved in early perceptual grouping. This result encouraged us to explore the formation of synchronous trans-hemispheric networks induced by the stimuli of various spatial frequencies with this multimodal approach. We have found the involvement of ventral and medio-dorsal visual networks modulated by the spatial frequency content of the stimulus. Thus, based on the combination of EEG coherence and fMRI BOLD data, we have identified visual networks with different sensitivity to integrating low vs. high spatial frequencies. In the second part of this work we test the hypothesis that the increase of brain activity during perceptual grouping depends on the activity of callosal axons interconnecting the visual areas that are involved. To this end, in children of 7-13 years, we investigated functional (functional activation with fMRI) and morphological (myelination of the corpus callosum with Magnetization Transfer Imaging (MTI)) aspects of spatial integration. In children, the activation associated with the spatial integration across visual fields was localized in visual ventral stream and limited to a part of the area activated in adults. The strong correlation between individual BOLD responses in .this area and the myelination of the splenial system of fibers points to myelination as a significant factor in the development of the spatial integration ability.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
PURPOSE: To determine the types and incidence of caruncular lesions and to investigate the correlation between clinical and histologic diagnosis. DESIGN: Retrospective, observational case series. METHODS: Records of patients with a lesion of the caruncle that was excised and submitted to our ocular pathology department between January 1979 and May 2005 were reviewed. Lesions were classified by histologic type and correlated with patient age, gender, and preoperative clinical diagnosis. RESULTS: A total of 195 consecutive caruncular lesions from 191 patients were identified. Twenty-four different types of lesions were identified; the most common were nevi (n = 92, 47%) and papillomas (n = 29, 15%). One keratoacanthoma was identified. One hundred eighty-three lesions (93.8%) were benign, six (3.1%) were premalignant, and five (2.6%) were malignant. Preoperative clinical diagnosis corresponded to postexcision histologic diagnosis in 73 cases (37.4%). Suspected malignancy was a common reason for excision (61 cases, 31.3%), but malignancy was confirmed in only three (4.9%) of 61 cases. Two of the five malignant lesions were clinically thought to be benign. CONCLUSIONS: We hereby report the first caruncular keratoacanthoma. The rarity and variety of caruncular lesions make clinical diagnosis difficult. Malignancy is clinically overestimated, and some malignant lesions can take a benign aspect, justifying close photographic follow-up of all lesions. Because caruncular malignant melanoma is associated with poor prognosis, pigmented lesions should be monitored carefully. In the absence of clear criteria for malignancy, any change in color, size, or vascularization of a caruncular lesion should hasten excision.
Resumo:
Numerous sources of evidence point to the fact that heterogeneity within the Earth's deep crystalline crust is complex and hence may be best described through stochastic rather than deterministic approaches. As seismic reflection imaging arguably offers the best means of sampling deep crustal rocks in situ, much interest has been expressed in using such data to characterize the stochastic nature of crustal heterogeneity. Previous work on this problem has shown that the spatial statistics of seismic reflection data are indeed related to those of the underlying heterogeneous seismic velocity distribution. As of yet, however, the nature of this relationship has remained elusive due to the fact that most of the work was either strictly empirical or based on incorrect methodological approaches. Here, we introduce a conceptual model, based on the assumption of weak scattering, that allows us to quantitatively link the second-order statistics of a 2-D seismic velocity distribution with those of the corresponding processed and depth-migrated seismic reflection image. We then perform a sensitivity study in order to investigate what information regarding the stochastic model parameters describing crustal velocity heterogeneity might potentially be recovered from the statistics of a seismic reflection image using this model. Finally, we present a Monte Carlo inversion strategy to estimate these parameters and we show examples of its application at two different source frequencies and using two different sets of prior information. Our results indicate that the inverse problem is inherently non-unique and that many different combinations of the vertical and lateral correlation lengths describing the velocity heterogeneity can yield seismic images with the same 2-D autocorrelation structure. The ratio of all of these possible combinations of vertical and lateral correlation lengths, however, remains roughly constant which indicates that, without additional prior information, the aspect ratio is the only parameter describing the stochastic seismic velocity structure that can be reliably recovered.
Resumo:
We prove some results concerning the possible configuration s of Herman rings for transcendental meromorphic functions. We show that one pole is enough to obtain cycles of Herman rings of arbitrary period a nd give a sufficient condition for a configuration to be realizable.