962 resultados para Marine invertebrates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Paleomagnetic secular variation (PSV) records have been recovered from three marine sediment cores from Santa Catalina basin, California continental borderland, in order to more accurately date these late Quaternary sediments. ... The sedimentation rates derived from the time/depth curves suggest a constant rate of 20-25 cm/ky for the last 6700 years throughout Santa Catalina basin, and more variable rates (but constant within each core) of 13-86 cm/ky prior to 6700 ybp. The sedimentation rates prior to 6700 ybp are lowest in the southcentral portion of the basin and systematically increase toward the north end of the basin. These results suggest that 6700±300 ybp marks a major change in paleoceanographic processes within Santa Catalina basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adjacency of 2 marine biogeographic regions off Cape Hatteras, North Carolina (NC), and the proximity of the Gulf Stream result in a high biodiversity of species from northern and southern provinces and from coastal and pelagic habitats. We examined spatiotemporal patterns of marine mammal strandings and evidence of human interaction for these strandings along NC shorelines and evaluated whether the spatiotemporal patterns and species diversity of the stranded animals reflected published records of populations in NC waters. During the period of 1997–2008, 1847 stranded animals were documented from 1777 reported events. These animals represented 9 families and 34 species that ranged from tropical delphinids to pagophilic seals. This biodiversity is higher than levels observed in other regions. Most strandings were of coastal bottlenose dolphins (Tursiops truncatus) (56%), harbor porpoises (Phocoena phocoena) (14%), and harbor seals (Phoca vitulina) (4%). Overall, strandings of northern species peaked in spring. Bottlenose dolphin strandings peaked in spring and fall. Almost half of the strandings, including southern delphinids, occurred north of Cape Hatteras, on only 30% of NC’s coastline. Most stranded animals that were positive for human interaction showed evidence of having been entangled in fishing gear, particularly bottlenose dolphins, harbor porpoises, short-finned pilot whales (Globicephala macrorhynchus), harbor seals, and humpback whales (Megaptera novaeangliae). Spatiotemporal patterns of bottlenose dolphin strandings were similar to ocean gillnet fishing effort. Biodiversity of the animals stranded on the beaches reflected biodiversity in the waters off NC, albeit not always proportional to the relative abundance of species (e.g., Kogia species). Changes in the spatiotemporal patterns of strandings can serve as indicators of underlying changes due to anthropogenic or naturally occurring events in the source populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of the significant contributions in the peer-reviewed literature indicates that the discarding of marine fish known as bycatch remains one of the most significant problem facing fisheries managers. Bycatch has negative affects on marine biodiversity, is ripe with ethical and moral issues surrounding the waste of life from increased juvenile fish mortality, hinders commercial profitability and recreational satisfaction, increases management costs, and results in socio-cultural problems and conflicts. While appearing to have a simple conservation engineering solution, reducing or eliminating bycatch in marine fishing operations given the presently existing regulated open access management environment is demonstrated to actually be so complex that its effects can appear to be counter-intuitive. An ecosystem simulation model that explicitly incorporates the human and biological dimensions is used to evaluate proposed bycatch reduction regulations for two fishing fleets exploiting three out of seven species of fish, each with ten cohorts, in two resource areas. One of the fishing fleets is divided into two components representing commercial fishermen and recreational anglers. The seven fish species represent predator, prey, and competitor behaviors and one stock is treated as an endangered species. The results displayed in a series of figures demonstrate the potential unintended effects of simplistic management approaches and the need for a holistic and comprehensive approach to bycatch management. That is, an ecosystem model that explicitly incorporates socio-cultural and biophysical attributes into a common framework allows the magnitude and direction of behavioral responses to be predicted based on changes in governance or biophysical constraints to determine if management goals and objectives have been obtained through the use of quantitative metrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first dedicated collections of deep-water (>80 m) sponges from the central Aleutian Islands revealed a rich fauna including 28 novel species and geographical range extensions for 53 others. Based on these collections and the published literature, we now confirm the presence of 125 species (or subspecies)of deep-water sponges in the Aleutian Islands. Clearly the deep-water sponge fauna of the Aleutian Islands is extraordinarily rich and largely understudied. Submersible observations revealed that sponges, rather than deep-water corals, are the dominant feature shaping benthic habitats in the region and that they provide important refuge habitat for many species of fish and invertebrates including juvenile rockfish (Sebastes spp.) and king crabs (Lithodes sp). Examination of video footage collected along 127 km of the seafloor further indicate that there are likely hundreds of species still uncollected from the region, and many unknown to science. Furthermore, sponges are extremely fragile and easily damaged by contact with fishing gear. High rates of fishery bycatch clearly indicate a strong interaction between existing fisheries and sponge habitat. Bycatch in fisheries and fisheries-independent surveys can be a major source of information on the location of the sponge fauna, but current monitoring programs are greatly hampered by the inability of deck personnel to identify bycatch. This guide contains detailed species descriptions for 112 sponges collected in Alaska, principally in the central Aleutian Islands. It addresses bycatch identification challenges by providing fisheries observers and scientists with the information necessary to adequately identify sponge fauna. Using that identification data, areas of high abundance can be mapped and the locations of indicator species of vulnerable marine ecosystems can be determined. The guide is also designed for use by scientists making observations of the fauna in situ with submersibles, including remotely operated vehicles and autonomous underwater vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Marine Fisheries Service (NMFS) is dedicated to the stewardship of living marine resources (LMR’s). This is accomplished through science-based conservation and management, and the promotion of healthy ecosystems. As a steward, NMFS has an obligation to conserve, protect, and manage these resources in a way that ensures their continuation as functioning components of healthy marine ecosystems, affords economic opportunities, and enhances the quality of life for the American public. In addition to its responsibilities within the U.S. Exclusive Economic Zone (EEZ), NMFS plays a supportive and advisory role in the management of LMR’s in the coastal areas under state jurisdiction and provides scientific and policy leadership in the international arena. NMFS also implements international measures for the conservation and management of LMR’s, as appropriate.NMFS receives its stewardship responsibilities under a number of Federal laws. These include the Nation’s primary fisheries law, the Magnuson Fishery Conservation and Management Act. This law was first passed in 1976, later reauthorized as the Magnuson-Stevens Fishery Conservation and Management Act in 1996, and reauthorized again on 12 January 2007 as the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act (MSRA). The MSRA mandates strong action to conserve and manage fishery resources and requires NMFS to end overfishing by 2010 in all U.S. commercial and recreational fisheries, rebuild all overfished stocks, and conserve essential fish habitat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ecological Society of America and NOAA's Offices of Habitat Conservation and Protected Resources sponsored a workshop to develop a national marine and estuarine ecosystem classification system. Among the 22 people involved were scientists who had developed various regional classification systems and managers from NOAA and other federal agencies who might ultimately use this system for conservation and management. The objectives were to: (1) review existing global and regional classification systems; (2) develop the framework of a national classification system; and (3) propose a plan to expand the framework into a comprehensive classification system. Although there has been progress in the development of marine classifications in recent years, these have been either regionally focused (e.g., Pacific islands) or restricted to specific habitats (e.g., wetlands; deep seafloor). Participants in the workshop looked for commonalties across existing classification systems and tried to link these using broad scale factors important to ecosystem structure and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report argues for greatly increased resources in terms of data collection facilities and staff to collect, process, and analyze the data, and to communicate the results, in order for NMFS to fulfill its mandate to conserve and manage marine resources. In fact, the authors of this report had great difficulty defining the "ideal" situation to which fisheries stock assessments and management should aspire. One of the primary objectives of fisheries management is to develop sustainable harvest policies that minimize the risks of overfishing both target species and associated species. This can be achieved in a wide spectrum of ways, ranging between the following two extremes. The first is to implement only simple management measures with correspondingly simple assessment demands, which will usually mean setting fishing mortality targets at relatively low levels in order to reduce the risk of unknowingly overfishing or driving ecosystems towards undesirable system states. The second is to expand existing data collection and analysis programs to provide an adequate knowledge base that can support higher fishing mortality targets while still ensuring low risk to target and associated species and ecosystems. However, defining "adequate" is difficult, especially when scientists have not even identified all marine species, and information on catches, abundances, and life histories of many target species, and most associated species, is sparse. Increasing calls from the public, stakeholders, and the scientific community to implement ecosystem-based stock assessment and management make it even more difficult to define "adequate," especially when "ecosystem-based management" is itself not well-defined. In attempting to describe the data collection and assessment needs for the latter, the authors took a pragmatic approach, rather than trying to estimate the resources required to develop a knowledge base about the fine-scale detailed distributions, abundances, and associations of all marine species. Thus, the specified resource requirements will not meet the expectations of some stakeholders. In addition, the Stock Assessment Improvement Plan is designed to be complementary to other related plans, and therefore does not duplicate the resource requirements detailed in those plans, except as otherwise noted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project provides a framework for developing the capabilities of using satellite and related oceanographic and climatological data to improve environmental monitoring and characterization of physical, biological, and water quality parameters in the National Marine Sanctuaries (NMS). The project sought to: 1) assemble satellite imagery datasets in order to extract spatially explicit time series information on temperature, chlorophyll, and light availability for the Cordell Bank, Gulf of the Farallones, and Monterey Bay National Marine Sanctuaries. 2) perform preliminary analyses with these data in order to identify seasonal, annual, inter-annual, and event-driven patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The offshore shelf and canyon habitats of the OCNMS are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The priority management goal of the National Marine Sanctuaries Program (NMSP) is to protect marine ecosystems and biodiversity. This goal requires an understanding of broad-scale ecological relationships and linkages between marine resources and physical oceanography to support an ecosystem management approach. The Channel Islands National Marine Sanctuary (CINMS) is currently reviewing its management plan and investigating boundary expansion. A management plan study area (henceforth, Study Area) was described that extends from the current boundary north to the mainland, and extends north to Point Sal and south to Point Dume. Six additional boundary concepts were developed that vary in area and include the majority of the Study Area. The NMSP and CINMS partnered with NOAA’s National Centers for Coastal Ocean Science Biogeography Team to conduct a biogeographic assessment to characterize marine resources and oceanographic patterns within and adjacent to the sanctuary. This assessment includes a suite of quantitative spatial and statistical analyses that characterize biological and oceanographic patterns in the marine region from Point Sal to the U.S.-Mexico border. These data were analyzed using an index which evaluates an ecological “cost-benefit” within the proposed boundary concepts and the Study Area. The sanctuary resides in a dynamic setting where two oceanographic regimes meet. Cold northern waters mix with warm southern waters around the Channel Islands creating an area of transition that strongly influences the regions oceanography. In turn, these processes drive the biological distributions within the region. This assessment analyzes bathymetry, benthic substrate, bathymetric life-zones, sea surface temperature, primary production, currents, submerged aquatic vegetation, and kelp in the context of broad-scale patterns and relative to the proposed boundary concepts and the Study Area. Boundary cost-benefit results for these parameters were variable due to their dynamic nature; however, when analyzed in composite the Study Area and Boundary Concept 2 were considered the most favorable. Biological data were collected from numerous resource agencies and university scientists for this assessment. Fish and invertebrate trawl data were used to characterize community structure. Habitat suitability models were developed for 15 species of macroinvertebrates and 11 species of fish that have significant ecological, commercial, or recreational importance in the region and general patterns of ichthyoplankton distribution are described. Six surveys of ship and plane at-sea surveys were used to model marine bird diversity from Point Arena to the U.S.-Mexico border. Additional surveys were utilized to estimate density and colony counts for nine bird species. Critical habitat for western snowy plover and the location of California least tern breeding pairs were also analyzed. At-sea surveys were also used to describe the distribution of 14 species of cetaceans and five species of pinnipeds. Boundary concept cost-benefit indices revealed that Boundary Concept 2 and the Study Area were most favorable for the majority of the species-specific analyses. Boundary Concept 3 was most favorable for bird diversity across the region. Inadequate spatial resolution for fish and invertebrate community data and incompatible sampling effort information for bird and mammal data precluded boundary cost-benefit analysis.