997 resultados para Maquinas eletrica síncronas
Resumo:
The technologies are advancing at a pace so expressive that allow the increase of the power quality from generation until the distribution to end customers. This improvement has been made possible through the automation of the energy that follows to a better quality of the energy provided, a lower energy supply disruptions and a very short recovery time. The trend of today and the near future is the distributed energy generation. To keep the automated control of the chain, the presence of Smart Grids is needed and that will be the most efficient and economical way to manage the entire system. Within this theme, is going to be necessary analyze the electric cars that promise to promote a more sustainable transport because it doesn’t uses fossil fuels, and more healthy because it does not emit pollutants into the atmosphere. The popularization of this type of vehicle is estimated to happen in a few decades and the case study analyzing its influence on the demand of the electrical system is something that will be very important in the near future. This paper presents a study of the influence of the inclusion of charges refering to electric cars
Resumo:
This paper aims to present the design, development and construction of a reducer / multiplier speeds low cost, sturdy and easy operation. The beginning of the project was given to research on issues related to mechanisms and machine elements, and these theories of fundamental importance in the development of items of equipment which, together with the aid of AutoCAD software, enabled the construction of it. Parallel to the sizing of equipment, were also investigated and taken into account the costs of materials used in the project. Made to mount the reducer / multiplier speeds it was at the evidence through experiments involving the use of torque wrench, tachometer and weights, getting proven applicability in situations that are small or medium loads required
Resumo:
The internal combustion engine is a heat engine widely used in the automotive industry. In order to better understand its behavior many models in the literature have been proposed in the last years. The 0-D thermodynamic model is a fairly simple tool but it is very useful to understand the phenomenon of combustion inside the chamber of internal combustion engines. In the first phase of this work, an extensive literature review was made in order to get information about this kind of analysis and, after this, apply them in a model able to calculate the instantaneous temperature and pressure in one zone of the combustion chamber of a diesel engine. Therefore some considerations were made with the aim of increasing the accuracy of the model in predicting the correct behavior of the engine, adding the combined effects of heat transfer, leakage and injection. In the second phase, the goal was to study the internal flow of a three-dimensional model of an internal combustion engine. In order to achieve this goal the software Solidworks was used to create the geometries of an engine and the suite of softwares Ansys was used to create the moving mesh (ICEM CFD and CFX-Pre) and to solve the CFD problem (Ansys CFX code). The model was able to perform the air flow simulation during the four-stroke cycle of an engine: admission, compression, expansion and exhaust. The results obtained from both models were suitable and they open a new range of possibilities for future researches on the field
Resumo:
This study is about a heating line that uses thermal oil. It is located in a facility that produces interlayers used in cars windshields. A plastic resin is melted and is sent to a matrix called DIE where the interlayers are produced. The DIE needs to receive heat from the circulation of thermal oil in four different regions of its interior, to ensure the correct thickness of the interlayer. The thermal energy is provided by electric heaters and the flow of thermal oil is impelled by four mechanically sealed centrifugal pumps (one per region). The key point of this study is the fact that these four pumps of the system have reported successive failures in the mechanical seals. Apparently, a poorly designed project has burdened the system intermittently. The pumps operation condition is located in a region of low efficiency, according to the characteristic curves. This fact is the source of the noticeable reduced time between failures. Changes in the configuration of the facility and in the number of pumps will be proposed, aiming to achieve higher operational efficiency. The proposals will be mathematically analyzed according to the Hydraulic Institute criteria. At the same time, we will also keep focus on an in-depth study of a heating system structure, starting with a detailed approach for each component and discussion about its real need and economic viability. At the end of this paper it is shown that the gain in efficiency achieved with the new proposed configuration reflects not only in the reduction of maintenance costs, but also a potential improvement in energy efficiency. It is shown that these two aspects are closely related and together form the basis for the design of a reliable and efficient pumping system
Resumo:
The oil extraction in deep waters sparked new areas of knowledge, the creation of engineering courses dedicated just to these processes and a wide field of analysisvoiding multiple impacts in case of faults, mainly the economic and environmental. This paper aims to show on the effects and causes of fatigue failure in steel tubes used for oil and gastransportation (linepipe), mainly caused by vortex induced vibrations, or VIV. To make this, through laboratory tests, it found trough the curve Stress versus Number of Cycles, and thus estimating that with a stress value of 350 MPa or less, the fatigue life cycle of the API 5CT T95 (1% Cr) pipe is estimated infinite. It could conclude that the analyzed material has good fatigue failure resistance for offshore use, taking into account only the influence of VIV's, since there are no stress concentrators
Resumo:
How companies can sell their surplus production capacity of electric power in Brazil? This work was developed from the question presented and focusing on clarification of procedures to enter the Brazilian electricity market by providing basic guidelines based on resolutions by National Agency of Electric Energy, National System Operator procedures and rules of the Assembly of Electric Energy Commercialization. It features subsidy to companies that fit this profile to evaluate the possibility to sell their surplus electricity. The general aim was to analyze the procedures and the necessary steps to make this sale happen. Was developed through a literature review where an overview of the Brazilian electric sector and a case study of a company that has excess capacity of electricity, but doesn’t make its marketing. Resulted in the expected clarification as well as the incentive for companies through the information presented, the entry in this trade since power is still crucial to the country's economic growth and ensure its availability in quantity demanded is a challenge of the utmost importance for satisfactory results are achieved economic development contributing to the progress of our society
Resumo:
Steel industry is a sector heavily dependent on energy, both electrical and thermal. Since the receipt of raw materials to the shipment of finished products to customers, through mergers, casting, rolling, heat treatment, inspection, among others, high amounts of energy are demanded, generating very significant costs to the productive chain in its entirety . Therefore, any alternative that favors the reduction in energy consumption or barateie the cost of this is very welcome. Within this context, this paper aims to make a technical and economic analysis of installing a cogeneration plant in the field rolling in a non-integrated steel mill. Two configurations are proposed plants, with one being the use of heat from waste gases from furnaces existing in the area mentioned and another with the use of heat from waste gases from an internal combustion engine. Both proposals are evaluated technically and later is done the economic analysis, calculating the financial return (pay back) in relation to the investment required, operation and maintenance of the plant
Resumo:
This paper presents a comparative study based on literature and examples in the literature, the two main technologies for the transmission of electricity at high voltage: alternate current transmission and direct current transmission. Inside the direct current transmission will be shown two technologies currently employed, transmission by current source and transmission by voltage source, contributing to a better understanding of them. The ultimate goal is to provide a text for consultation to identify key characteristics that influence the choice of future transmission lines
Resumo:
The present work aims to conduct a study of the economic feasibility of the implementation of variable frequency inverters in pump systems with variable flow rates. The concern with the reduction of energy expenditure in industries raised in 2001 due to the energy crisis that hit Brazil at that time, forcing industries to reduce their electric costs under penalty of fines if this were not done (MOREIRA, 2008). Frequency inverter is an electronic device that allow greater control in the operation of pumping systems and also a reduction in electrical consumption, being a viable solution to achieve a reduction in energy consumption. For the development of this work, approaching important topics in pumping systems was necessary in order to make a correct choice of hydraulic pumping and also other components responsible for the operation of the system , such as electric motors and frequency inverters. In the case study, a theoretical analysis of the behavior of electrical consumption in systems with variable flow rates was performed, comparing when the system is operated via frequency inverters and when the system is operated without such a device. As expected, the result of the implantation of the device was quite satisfactory, and the primary goal of reducing energy expenditure was achieved. Also important to highlight the environmental issue of this work, as all forms of energy production affects nature in some way, achieving a reduction in consumption also contributes indirectly in environmental conservation
Resumo:
Steam generation plants have several industrial applications, being important for the national and global energetic matrix. Operational knowledge of steam plants is extremely important to forming a Mechanical Engineer. The facilities from Faculty of Engineering of Guaratingueta have a no operated steam pilot plant, named Thermal Machine Lab. Nowadays, the Energy Department from the faculty cannot explore this lab for its classes, even being essential to consolidate the theoretical concepts with tests simulating industrial applications. The goal of this project was to restore the operational condition of equipment of steam laboratory by fixing the equipment, and creating operational scripts for them. In a close future this lab could be used for classes, research and other applications
Resumo:
This work aims to determine the first natural frequency of rotation shaft by using a basic software, Excel, and to compare it to the values obtained in laboratory. When an axle is submitted to a rotation, depending on the rotational frequency used, the axle can enter a state of resonance, in which the amplitude of vibration becomes rather high. The frequencies in which the resonance is observed depends on several parameters of the axle, including the number of concentrated masses associated to the axle. Thus, to obtain a computer program of easy use and access, which can preview the frequency of resonance of an axle in rotation with ‘n’ numbers of concentrated masses it has been studied how the frequency varies with each of these parameters. The computer program and the analyses have been made using the Rayleigh Method, which allowed the transformation of a continuous system to discrete through the theory of finite elements, which has proved that, the bigger the number of divisions of the shaft taken into consideration in the calculus of the natural frequency, the more this value gets close to the real value. The results obtained have been considered satisfactory once these have gotten close to the theoretical results expected
Resumo:
The electrical substations have the goal to transmit, distribute and change the characteristics of electrical energy transmission networks of dealers to the end user with a high rate of reliability and continuously. For this it’s necessary to accomplish a gathering of datas from the local dealers where will be installed the substation to make a good electric project. This work has the objective to gather all the contents relatives to electric project of substation that are scattered in the literature, in order to organize and develop a basic guide that presents a methodology to dimension electrical equipments that belong to an industrial substation at 15 kV. In addition to elaborate a basic guide, this work aids to specify electrical equipments installed in the substation, bringing information and comparisons to know and determinate the kind of equipments that will be used, in a correct and coherent way with the national and international rules. Ultimately, after determined, got and specified all the equipments that belongs to an industrial substation, the work mention in global manner how to calculate the dimension of substation physical arrangement, determining all the least and required dimensions of each cubicle
Resumo:
The current world's need for clean and renewable energy sources aligned with the strong Brazilian growth looking to diversify its electric power generation sources, highly dependent on hydropower and petroleum encourages the implementation of technologies that reach this growth with diversity and cleaning. The sun energy source is considered inexhaustible and can meet the demand for energy through thermo solar plants to generate electricity. Several technologies are being studied and developed in the world and they can be used to generate electricity from the solar concentration, but in Brazil its use is still not found commercially. It is therefore essential to understand these technologies and develop knowledge about them so they can be implemented in Brazil. This work brings an overview of the thermo solar generation in Brazil, showing the different technologies and a thermodynamic simulation of one of such technologies considering a hybrid plant with complementary generation biomass, aiming at the generation of 1 MW in the Brazilian Northeast
Resumo:
Through awareness of new trends of consumption of the population with regard to housing, comfort, entertainment, security and sustainability, it was crafted a work that set out to study and develop the concept of home automation and how it will revolutionize the electrical installation projects and energy savings. A pre-wiring project, taking into account, basically, the installed load, is presented as a basis for comparison. The protocols for communication between intelligent devices in an automation environment, used in the work, are the X-10, LonWorks and UPnP. The home network is studied and divided into subsystems, for a better understanding, which are the lighting, audio, video and multimedia system, security, air conditioning and central vacuum system, and the idea of integrated design and system integrator is introduced, showing the change necessity in the design philosophy of electrical installations. The main means of energy savings in an automated home, such as dimerization, master off and smart meters are presented and, finally, it was concluded that there is a need to structure electrical installation projects more comprehensive with regard to home automation, in order to become more efficient and useful to users
Resumo:
In the industries of wood processing (sawmills), where timber is sawn in equipment such as band saws, circular saws, trowel, thicknessers, among others, that mechanically transform this resource and use of electric motors, which are not unusually poorly scaled working or overloaded, often a factor that is not found in these industries and has fundamental importance in the production process is energy efficiency that is achieved by both technological innovation and through all the practices and policies that aim to lower energy consumption, lowering energy costs and increasing the amount of energy offered no change in generation. For both during the design of an electrical installation, both overall and in various sectors of the installation, investigations are necessary, considerations and uses of variables and factors that put into practice the theme of energy efficiency. Therefore, in this paper, these factors were calculated and analyzed for a wood processing industry (sawmill) in the municipality of Taquarivaí - SP, namely: active power, power factor, demand factor and load factor. Where they were small in relation to the literature, these events that occur when devices are connected at the same time and due to the conditions of processing the wood, where the engines have large variations in electricity consumption during the unfolding of the same, due to efforts with the load and idle moments between each machining operation in the equipment