951 resultados para Magnetite. Polyol. Nanoparticles. Superparamagnetic and thermal decomposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CHCOOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CHCOOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend is observed for the model compound, chlorogenic acid. The addition of potassium does not produce a dramatic change in the tar product distribution, although its addition to chlorogenic acid promoted the generation of cyclohexane and phenol derivatives. Postulated thermal decomposition schemes for chlorogenic acid are presented. © 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algae are a new potential biomass for energy production but there is limited information on their pyrolysis and kinetics. The main aim of this thesis is to investigate the pyrolytic behaviour and kinetics of Chlorella vulgaris, a green microalga. Under pyrolysis conditions, these microalgae show their comparable capabilities to terrestrial biomass for energy and chemicals production. Also, the evidence from a preliminary pyrolysis by the intermediate pilot-scale reactor supports the applicability of these microalgae in the existing pyrolysis reactor. Thermal decomposition of Chlorella vulgaris occurs in a wide range of temperature (200-550°C) with multi-step reactions. To evaluate the kinetic parameters of their pyrolysis process, two approaches which are isothermal and non-isothermal experiments are applied in this work. New developed Pyrolysis-Mass Spectrometry (Py-MS) technique has the potential for isothermal measurements with a short run time and small sample size requirement. The equipment and procedure are assessed by the kinetic evaluation of thermal decomposition of polyethylene and lignocellulosic derived materials (cellulose, hemicellulose, and lignin). In the case of non-isothermal experiment, Thermogravimetry- Mass Spectrometry (TG-MS) technique is used in this work. Evolved gas analysis provides the information on the evolution of volatiles and these data lead to a multi-component model. Triplet kinetic values (apparent activation energy, pre-exponential factor, and apparent reaction order) from isothermal experiment are 57 (kJ/mol), 5.32 (logA, min-1), 1.21-1.45; 9 (kJ/mol), 1.75 (logA, min-1), 1.45 and 40 (kJ/mol), 3.88 (logA, min-1), 1.45- 1.15 for low, middle and high temperature region, respectively. The kinetic parameters from non-isothermal experiment are varied depending on the different fractions in algal biomass when the range of apparent activation energies are 73-207 (kJ/mol); pre-exponential factor are 5-16 (logA, min-1); and apparent reaction orders are 1.32–2.00. The kinetic procedures reported in this thesis are able to be applied to other kinds of biomass and algae for future works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The projected decline in fossil fuel availability, environmental concerns, and security of supply attract increased interest in renewable energy derived from biomass. Fast pyrolysis is a possible thermochemical conversion route for the production of bio-oil, with promising advantages. The purpose of the experiments reported in this thesis was to extend our understanding of the fast pyrolysis process for straw, perennial grasses and hardwoods, and the implications of selective pyrolysis, crop harvest and storage on the thermal decomposition products. To this end, characterisation and laboratory-scale fast pyrolysis were conducted on the available feedstocks, and their products were compared. The variation in light and medium volatile decomposition products was investigated at different pyrolysis temperatures and heating rates, and a comparison of fast and slow pyrolysis products was conducted. Feedstocks from different harvests, storage durations and locations were characterised and compared in terms of their fuel and chemical properties. A range of analytical (e.g. Py-GC-MS and TGA) and processing equipment (0.3 kg/h and 1.0 kg/h fast pyrolysis reactors and 0.15 kg slow pyrolysis reactor) was used. Findings show that the high bio-oil and char heating value, and low water content of willow short rotation coppice (SRC) make this crop attractive for fast pyrolysis processing compared to the other investigated feedstocks in this project. From the analytical sequential investigation of willow SRC, it was found that the volatile product distribution can be tailored to achieve a better final product, by a variation of the heating rate and temperature. Time of harvest was most influential on the fuel properties of miscanthus; overall the late harvest produced the best fuel properties (high HHV, low moisture content, high volatile content, low ash content), and storage of the feedstock reduced the moisture and acid content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This chemistry is simple and allows the fabrication of well-defined block copolymers with controllable block lengths. The block copolymers, designed for use as interfacial adhesive layers in organic photovoltaics to enhance contact between the photoactive and hole transport layers, comprise printable poly(3-hexylthiophene)-block-poly(neopentyl p-styrenesulfonate), P3HT-b-PNSS. Subsequently, they are converted to P3HT-b-poly(p-styrenesulfonate), P3HT-b-PSS, following deposition and thermal treatment at 150 °C. Grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS) revealed that thin films of the amphiphilic block copolymers comprise lamellar nanodomains of P3HT crystallites that can be pushed further apart by increasing the PSS block lengths. The approach of using a thermally modifiable block allows deposition of this copolymer from a single organic solvent and subsequent conversion to an amphiphilic layer by nonchemical means, particularly attractive to large scale roll-to-roll industrial printing processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption and decomposition of ethylene over a Pt{111} single crystalsurface has been investigated by fast x-ray spectroscopy. At 100 K ethene displays precursor-mediated adsorption kinetics, adopting a single environment with a saturation C2H4 coverage of 0.25 ML and binding energy of 283.2 eV. Thermal decomposition proceeds above 240 K via dehydrogenation to ethylidyne with an activation barrier of 57±3 kJ mol−1 and preexponential factor ν=1×1010±0.5 s−1. Site-blocking by preadsorbed SO4 reduces the saturation ethene coverage but induces a new, less reactive π-bonded ethene species centered around 283.9 eV, which in turn decomposes to ethylidyne at 350 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SO2 oxidation has been followed by Fast XPS over Pt{111}. Preadsorbed oxygen reduces the low temperature saturation coverage of SO2 with respect to the clean surface. Heating a mixed O2/SO2 adlayer results in efficient oxidation of both upright and flat-lying SO2 molecules to surface-bound SO4. Sulphate decomposes above room temperature liberating gas-phase SO2 and SO3. Propene adsorbs molecularly at 100 K over clean Pt{111} and dehydrogenates above 250 K to form a stable propylidyne adlayer, which in turn decomposes above 400 K to form graphitic carbon. Preadsorbed surface sulphate enhances the sticking probability of propene via formation of an alkyl-sulphate complex. Thermal decomposition of this complex accounts for low temperature propene combustion and is accompanied by atomic sulpur deposition. Propylidyne forms as on clean Pt but is less reactive undergoing partial oxidation above 450 K with residual surface oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid nanocomposites based on N-doped SrTiO3 nanoparticles wrapped in g-C3N4 nanosheets were successfully prepared by a facile and reproducible polymeric citrate and thermal exfoliation method. The results clearly indicated that the N-doped SrTiO3 nanoparticles are successfully wrapped in layers of the g-C3N4 nanosheets. The g-C3N4/N-doped SrTiO3 nanocomposites showed absorption edges at longer wavelengths compared with the pure g-C3N4 as well as N-doped SrTiO3. The hybrid nanocomposites exhibit an improved photocurrent response and photocatalytic activity under visible light irradiation. Interestingly, the hybrid nanocomposite possesses high photostability and reusability. Based on experimental results, the possible mechanism for prolonged lifetime of the photoinduced charge carrier was also discussed. The high performance of the g-C3N4/N-doped SrTiO3 photocatalysts is due to the synergic effect at the interface of g-C3N4 and N-doped SrTiO3 hetero/nanojunction including the high separation efficiency of the charge carrier, band energy matching and the suppressed recombination rate. Therefore, the hybrid photocatalyst could be of potential interest for water splitting and environmental remediation under natural sunlight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, ammonia borane has increasingly attracted researchers’ attention because of its merging applications, such as organic synthesis, boron nitride compounds synthesis, and hydrogen storage. This dissertation presents the results from several studies related to ammonia borane. The pressure-induced tetragonal to orthorhombic phase transition in ammonia borane was studied in a diamond anvil cell using in situ Raman spectroscopy. We found a positive Clapeyron-slope for this phase transformation in the experiment, which implies that the phase transition from tetragonal to orthorhombic is exothermic. The result of this study indicates that the rehydrogenation of the high pressure orthorhombic phase is expected to be easier than that of the ambient pressure tetragonal phase due to its lower enthalpy. The high pressure behavior of ammonia borane after thermal decomposition was studied by in situ Raman spectroscopy at high pressures up to 10 GPa. The sample of ammonia borane was first decomposed at ~140 degree Celcius and ~0.7 GPa and then compessed step wise in an isolated sample chamber of a diamond anvil cell for Raman spectroscopy measurement. We did not observe the characteristic shift of Raman mode under high pressure due to dihydrogen bonding, indicating that the dihydrogen bonding disappears in the decomposed ammonia borane. Although no chemical rehydrogenation was detected in this study, the decomposed ammonia borane could store extra hydrogen by physical absorption. The effect of nanoconfinement on ammonia borane at high pressures and different temperatures was studied. Ammonia borane was mixed with a type of mesoporous silica, SBA-15, and restricted within a small space of nanometer scale. The nano-scale ammonia borane was decomposed at ~125 degree Celcius in a diamond anvil cell and rehydrogenated after applying high pressures up to ~13 GPa at room temperature. The successful rehydrogenation of decomposed nano-scale ammonia borane gives guidance to further investigations on hydrogen storage. In addition, the high pressure behavior of lithium amidoborane, one derivative of ammonia borane, was studied at different temperatures. Lithium amidoborane (LAB) was decomposed and recompressed in a diamond anvil cell. After applying high pressures on the decomposed lithium amidoborane, its recovery peaks were discovered by Raman spectroscopy. This result suggests that the decomposition of LAB is reversible at high pressures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, consumers affect ecosystem processes including nutrient dynamics. Herbivores have been known to slow nutrient flow in boreal forest ecosystems. I examined the effects of introduced moose on disturbed forests of Newfoundland, Canada by conducting a field experiment during August - November 2014 in 20 paired moose exclosure-control plots. I tested whether moose browsing directly and indirectly affected forests by measuring plant species composition, litter quality and quantity, soil quality, and decomposition rates in areas moose exclosure-control plots. I analyzed moose effects using linear mixed effects models and found evidence indicating that moose reduce plant height and litter biomass affecting the availability of carbon, nitrogen, and phosphorus. However, plant diversity, soil quality, and litter decomposition did not differ between moose exclosures and controls. Moose in Newfoundland directly influence plant regeneration and litter biomass while indirect effects on soil ecosystems may be limited by time, disturbance, and climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated whether heating occurs in sub-Antarctic megaherbs, and the relation of heating to relevant environmental variables. We measured leaf and inflorescence temperature in six sub-Antarctic megaherb species on Campbell Island, latitude 52.3°S, New Zealand Biological Region. Using thermal imaging camera (Fluke TI20, http://www.fluke.com/fluke/caen/support/software/ti-update) and thermal probe (Fluke 51 II digital thermal probe), in combination with measurement of solar radiation, ambient air temperature, wind speed, wind chill and humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.

The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.

ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.

Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.

Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.

Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Li-O2 battery may theoretically possess practical gravimetric energy densities several times greater than the current state-of-the-art Li-ion batteries.1 This magnitude of development is a requisite for true realization of electric vehicles capable of competing with the traditional combustion engine. However, significant challenges must be addressed before practical application may be considered. These include low efficiencies, low rate capabilities and the parasitic decomposition reactions of electrolyte/electrode materials resulting in very poor rechargeability.2-4 Ionic liquids, ILs, typically display several properties, extremely low vapor pressure and high electrochemical and thermal stability, which make them particularly interesting for Li-O2 battery electrolytes. However, the typically sluggish transport properties generally inhibit rate performance and cells suffer similar inefficiencies during cycling.5,6

In addition to the design of new ILs with tailored properties, formulating blended electrolytes using molecular solvents with ILs has been considered to improve their performance.7,8 In this work, we will discuss the physical properties vs. the electrochemical performance of a range of formulated electrolytes based on tetraglyme, a benchmark Li-O2 battery electrolyte solvent, and several ILs. The selected ILs are based on the bis{(trifluoromethyl)sulfonyl}imide anion and alkyl/ether functionalized cyclic alkylammonium cations, which exhibit very good stability and moderate viscosity.9 O2 electrochemistry will be investigated in these media using macro and microdisk voltammetry and O2 solubility/diffusivity is quantified as a function of the electrolyte formulation. Furthermore, galvanostatic cycling of selected electrolytes in Li-O2 cells will be discussed to probe their practical electrochemical performance. Finally, the physical characterization of the blended electrolytes will be reported in parallel to further determine structure (or formulation) vs. property relationships and to, therefore, assess the importance of certain electrolyte properties (viscosity, O2supply capability, donor number) on their performance.

This work was funded by the EPSRC (EP/L505262/1) and Innovate UK for the Practical Lithium-Air Batteries project (project number: 101577).

1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 11, 19 (2012).

2. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Barde and P. G. Bruce, Angew. Chem., Int. Ed., 50, 8609 (2011).

3. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov and A. C. Luntz, J. Phys. Chem. Lett., 3, 997 (2012).

4. D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. Ortiz-Vitoriano, P. Hammond, C. V. Thompson and Y. Shao-Horn, J. Phys. Chem. Lett., 5, 2850 (2014).

5. Z. H. Cui, W. G. Fan and X. X. Guo, J. Power Sources, 235, 251 (2013).

6. F. Soavi, S. Monaco and M. Mastragostino, J. Power Sources, 224, 115 (2013).

7. L. Cecchetto, M. Salomon, B. Scrosati and F. Croce, J. Power Sources, 213, 233 (2012).

8. A. Khan and C. Zhao, Electrochem. Commun., 49, 1 (2014).

9. Z. J. Chen, T. Xue and J.-M. Lee, RSC Adv., 2, 10564 (2012).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid iron oxide-gold nanoparticles (HNPs) have shown potential in cancer therapy as agents for tumour ablation
and thermal switches for targeted drug release. Heat generation occurs by exploitation of the surface plasmon
resonance of the gold coating, which usually occurs at the maximum UV absorption wavelength. However, lasers
at such wavelength are often expensive and highly specialised. Here, we report the heating and monitoring of heat
dissipation of HNPs suspended in agar phantoms using a relatively inexpensive Ng: YAG pulsed 1064 nm laser source.
The particles experience heating of up to 40°C with a total area of heat dissipation up to 132.73 mm2 from the 1 mm
diameter irradiation point after 60 seconds. This work reports the potential and possible drawbacks of these particles
for translation into cancer therapy based on our findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths.  We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process.  We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wydział Fizyki