964 resultados para Machine-tools
Resumo:
Computer Aided Parallelisation Tools (CAPTools) is a toolkit designed to automate as much as possible of the process of parallelising scalar FORTRAN 77 codes. The toolkit combines a very powerful dependence analysis together with user supplied knowledge to build an extremely comprehensive and accurate dependence graph. The initial version has been targeted at structured mesh computational mechanics codes (eg. heat transfer, Computational Fluid Dynamics (CFD)) and the associated simple mesh decomposition paradigm is utilised in the automatic code partition, execution control mask generation and communication call insertion. In this, the first of a series of papers [1–3] the authors discuss the parallelisations of a number of case study codes showing how the various component tools may be used to develop a highly efficient parallel implementation in a few hours or days. The details of the parallelisation of the TEAMKE1 CFD code are described together with the results of three other numerical codes. The resulting parallel implementations are then tested on workstation clusters using PVM and an i860-based parallel system showing efficiencies well over 80%.
Resumo:
User supplied knowledge and interaction is a vital component of a toolkit for producing high quality parallel implementations of scalar FORTRAN numerical code. In this paper we consider the necessary components that such a parallelisation toolkit should possess to provide an effective environment to identify, extract and embed user relevant user knowledge. We also examine to what extent these facilities are available in leading parallelisation tools; in particular we discuss how these issues have been addressed in the development of the user interface of the Computer Aided Parallelisation Tools (CAPTools). The CAPTools environment has been designed to enable user exploration, interaction and insertion of user knowledge to facilitate the automatic generation of very efficient parallel code. A key issue in the user's interaction is control of the volume of information so that the user is focused on only that which is needed. User control over the level and extent of information revealed at any phase is supplied using a wide variety of filters. Another issue is the way in which information is communicated. Dependence analysis and its resulting graphs involve a lot of sophisticated rather abstract concepts unlikely to be familiar to most users of parallelising tools. As such, considerable effort has been made to communicate with the user in terms that they will understand. These features, amongst others, and their use in the parallelisation process are described and their effectiveness discussed.
Resumo:
This paper considers the problem of sequencing n jobs in a three-machine flow shop with the objective of minimizing the makespan, which is the completion time of the last job. An O(n log n) time heuristic that is based on Johnson's algorithm is presented. It is shown to generate a schedule with length at most 5/3 times that of an optimal schedule, thereby reducing the previous best available worst-case performance ratio of 2. An application to the general flow shop is also discussed.
Resumo:
In many practical situations, batching of similar jobs to avoid setups is performed while constructing a schedule. This paper addresses the problem of non-preemptively scheduling independent jobs in a two-machine flow shop with the objective of minimizing the makespan. Jobs are grouped into batches. A sequence independent batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. Besides its practical interest, this problem is a direct generalization of the classical two-machine flow shop problem with no grouping of jobs, which can be solved optimally by Johnson's well-known algorithm. The problem under investigation is known to be NP-hard. We propose two O(n logn) time heuristic algorithms. The first heuristic, which creates a schedule with minimum total setup time by forcing all jobs in the same batch to be sequenced in adjacent positions, has a worst-case performance ratio of 3/2. By allowing each batch to be split into at most two sub-batches, a second heuristic is developed which has an improved worst-case performance ratio of 4/3. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
Resumo:
The consecutive, partly overlapping emergence of expert systems and then neural computation methods among intelligent technologies, is reflected in the evolving scene of their application to nuclear engineering. This paper provides a bird's eye view of the state of the application in the domain, along with a review of a particular task, the one perhaps economically more important: refueling design in nuclear power reactors.
Resumo:
The paper considers the open shop scheduling problem to minimize the make-span, provided that one of the machines has to process the jobs according to a given sequence. We show that in the preemptive case the problem is polynomially solvable for an arbitrary number of machines. If preemption is not allowed, the problem is NP-hard in the strong sense if the number of machines is variable, and is NP-hard in the ordinary sense in the case of two machines. For the latter case we give a heuristic algorithm that runs in linear time and produces a schedule with the makespan that is at most 5/4 times the optimal value. We also show that the two-machine problem in the nonpreemptive case is solvable in pseudopolynomial time by a dynamic programming algorithm, and that the algorithm can be converted into a fully polynomial approximation scheme. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 705–731, 1998
Resumo:
The paper considers the single machine due date assignment and scheduling problems with n jobs in which the due dates are to be obtained from the processing times by adding a positive slack q. A schedule is feasible if there are no tardy jobs and the job sequence respects given precedence constraints. The value of q is chosen so as to minimize a function ϕ(F,q) which is non-decreasing in each of its arguments, where F is a certain non-decreasing earliness penalty function. Once q is chosen or fixed, the corresponding scheduling problem is to find a feasible schedule with the minimum value of function F. In the case of arbitrary precedence constraints the problems under consideration are shown to be NP-hard in the strong sense even for F being total earliness. If the precedence constraints are defined by a series-parallel graph, both scheduling and due date assignment problems are proved solvable in time, provided that F is either the sum of linear functions or the sum of exponential functions. The running time of the algorithms can be reduced to if the jobs are independent. Scope and purpose We consider the single machine due date assignment and scheduling problems and design fast algorithms for their solution under a wide range of assumptions. The problems under consideration arise in production planning when the management is faced with a problem of setting the realistic due dates for a number of orders. The due dates of the orders are determined by increasing the time needed for their fulfillment by a common positive slack. If the slack is set to be large enough, the due dates can be easily maintained, thereby producing a good image of the firm. This, however, may result in the substantial holding cost of the finished products before they are brought to the customer. The objective is to explore the trade-off between the size of the slack and the arising holding costs for the early orders.
Resumo:
This paper considers the problem of sequencing n jobs in a two‐machine re‐entrant shopwith the objective of minimizing the maximum completion time. The shop consists of twomachines, M1 and M2 , and each job has the processing route (M1 , M2 , M1 ). An O(n log n)time heuristic is presented which generates a schedule with length at most 4/3 times that ofan optimal schedule, thereby improving the best previously available worst‐case performanceratio of 3/2.
Resumo:
This paper considers the problem of minimizing the schedule length of a two-machine shop in which not only can a job be assigned any of the two possible routes, but also the processing times depend on the chosen route. This problem is known to be NP-hard. We describe a simple approximation algorithm that guarantees a worst-case performance ratio of 2. We also present some modifications to this algorithm that improve its performance and guarantee a worst-case performance ratio of 3=2.
Resumo:
The paper considers the three‐machine open shop scheduling problem to minimize themakespan. It is assumed that each job consists of at most two operations, one of which is tobe processed on the bottleneck machine, the same for all jobs. A new lower bound on theoptimal makespan is derived, and a linear‐time algorithm for finding an optimalnon‐preemptive schedule is presented.
Resumo:
The Production Workstation developed at the University of Greenwich is evaluated as a tool for assisting all those concerned with production. It enables the producer, director, and cinematographer to explore the quality of the images obtainable when using a plethora of tools. Users are free to explore many possible choices, ranging from 35mm to DV, and combine them with the many image manipulation tools of the cinematographer. The validation required for the system is explicitly examined, concerning the accuracy of the resulting imagery. Copyright © 1999 by the Society of Motion Picture and Television Engineers, Inc.
Resumo:
The paper considers the job shop scheduling problem to minimize the makespan. It is assumed that each job consists of at most two operations, one of which is to be processed on one of m⩾2 machines, while the other operation must be performed on a single bottleneck machine, the same for all jobs. For this strongly NP-hard problem we present two heuristics with improved worst-case performance. One of them guarantees a worst-case performance ratio of 3/2. The other algorithm creates a schedule with the makespan that exceeds the largest machine workload by at most the length of the largest operation.
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.