854 resultados para Machine scheduling
Resumo:
This paper deals with “The Enchanted Journey,” which is a daily event tour booked by Bollywood-film fans. During the tour, the participants visit original sites of famous Bollywood films at various locations in Switzerland; moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour. For operational reasons, however, two or more buses cannot stay at the same location simultaneously. Further operative constraints include time windows for all activities and precedence constraints between some activities. The planning problem is how to compute a feasible schedule for each bus. We implement a two-step hierarchical approach. In the first step, we minimize the total waiting time; in the second step, we minimize the total travel time of all buses. We present a basic formulation of this problem as a mixed-integer linear program. We enhance this basic formulation by symmetry-breaking constraints, which reduces the search space without loss of generality. We report on computational results obtained with the Gurobi Solver. Our numerical results show that all relevant problem instances can be solved using the basic formulation within reasonable CPU time, and that the symmetry-breaking constraints reduce that CPU time considerably.
Resumo:
Most commercial project management software packages include planning methods to devise schedules for resource-constrained projects. As it is proprietary information of the software vendors which planning methods are implemented, the question arises how the software packages differ in quality with respect to their resource-allocation capabilities. We experimentally evaluate the resource-allocation capabilities of eight recent software packages by using 1,560 instances with 30, 60, and 120 activities of the well-known PSPLIB library. In some of the analyzed packages, the user may influence the resource allocation by means of multi-level priority rules, whereas in other packages, only few options can be chosen. We study the impact of various complexity parameters and priority rules on the project duration obtained by the software packages. The results indicate that the resource-allocation capabilities of these packages differ significantly. In general, the relative gap between the packages gets larger with increasing resource scarcity and with increasing number of activities. Moreover, the selection of the priority rule has a considerable impact on the project duration. Surprisingly, when selecting a priority rule in the packages where it is possible, both the mean and the variance of the project duration are in general worse than for the packages which do not offer the selection of a priority rule.
Resumo:
For executing the activities of a project, one or several resources are required, which are in general scarce. Many resource-allocation methods assume that the usage of these resources by an activity is constant during execution; in practice, however, the project manager may vary resource usage by individual activities over time within prescribed bounds. This variation gives rise to the project scheduling problem which consists in allocating the scarce resources to the project activities over time such that the project duration is minimized, the total number of resource units allocated equals the prescribed work content of each activity, and precedence and various work-content-related constraints are met.
Resumo:
Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.