979 resultados para MOSSBAUER-SPECTRA
Resumo:
We analyze the linewidth narrowing in the fluorescence spectrum of a two-level atom driven by a squeezed vacuum field of a finite bandwidth. It is found that the fluorescence spectrum in a low-intensity squeezed field can exhibit a (omega - omega(0))(-6) frequency dependence in the wings. We show that this fast fall-off behavior is intimately related to the properties of a narrow-bandwidth squeezed field and does not extend into the region of broadband excitation. We apply the Linear response model and find that the narrowing results from a convolution of the atom response with the spectrum of the incident field. On the experimental side, we emphasize that the linewidth narrowing is not sensitive to the solid angle of the squeezed modes coupled to the atom. We also compare the fluorescence spectrum with the quadrature-noise spectrum and find that the fluorescence spectrum for an off-resonance excitation does not reveal the noise spectrum. We show that this difference arises from the competing three-photon scattering processes. [S1050-2947(98)04308-X].
Resumo:
The resonance fluorescence of a two-level atom driven by a coherent laser field and damped by a finite bandwidth squeezed vacuum is analysed. We extend the Yeoman and Barnett technique to a non-zero detuning of the driving field from the atomic resonance and discuss the role of squeezing bandwidth and the detuning in the level shifts, widths and intensities of the spectral lines. The approach is valid for arbitrary values of the Rabi frequency and detuning but for the squeezing bandwidths larger than the natural linewidth in order to satisfy the Markoff approximation. The narrowing of the spectral lines is interpreted in terms of the quadrature-noise spectrum. We find that, depending on the Rabi frequency, detuning and the squeezing phase, different factors contribute to the line narrowing. For a strong resonant driving field there is no squeezing in the emitted field and the fluorescence spectrum exactly reveals the noise spectrum. In this case the narrowing of the spectral lines arises from the noise reduction in the input squeezed vacuum. For a weak or detuned driving field the fluorescence exhibits a large squeezing and, as a consequence, the spectral lines have narrowed linewidths. Moreover, the fluorescence spectrum can be asymmetric about the central frequency despite the symmetrical distribution of the noise. The asymmetry arises from the absorption of photons by the squeezed vacuum which reduces the spontaneous emission. For an appropriate choice of the detuning some of the spectral lines can vanish despite that there is no population trapping. Again this process can be interpreted as arising from the absorption of photons by the squeezed vacuum. When the absorption is large it may compensate the spontaneous emission resulting in the vanishing of the fluorescence lines.
Resumo:
We study the spectral and noise properties of the fluorescence field emitted from a two-level atom driven by a beam of squeezed light. For a weak driving field we derive simple analytical formulae for the fluorescence and quadrature-noise spectra which are valid for an arbitrary bandwidth of the squeezed field. We analyse the spectra in the regime where the squeezing bandwidth is smaller or comparable to the atomic linewidth, the area where non-Markovian effects are important. We emphasize that there is a noticable difference between the fluorescence spectra for the thermal and squeezed field excitations. In both cases the spectrum can be narrower than any bandwidth involved in the process. However, as we point out for the squeezed driving field the linewidth narrowing, being much larger than in the thermal-field case, can be attributed to the squeezing of the fluctuations in the driving held. We also calculate the quadrature-noise spectrum of the emitted fluorescence, and find that for a detuned squeezed field the fluorescence spectrum does not reveal the quadrature-noise spectrum. In contrast to the fluorescence spectrum having two peaks, the quadrature-noise spectrum exhibits three peaks. We explain this difference as arising from the competiting three-photon scattering processes. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The solution structure of A beta(1-40)Met(O), the methionine-oxidized form of amyloid beta-peptide A beta(1-40), has been investigated by CD and NMR spectroscopy. Oxidation of Met35 may have implications in the aetiology of Alzheimer's disease. Circular dichroism experiments showed that whereas A beta(1-40) and A beta(1-40)Met(O) both adopt essentially random coil structures in water (pH 4) at micromolar concentrations, the former aggregates within several days while the latter is stable for at least 7 days under these conditions. This remarkable difference led us to determine the solution structure of A beta(1-40)Met(O) using H-1 NMR spectroscopy. In a water-SDS micelle medium needed to solubilize both peptides at the millimolar concentrations required to measure NMR spectra, chemical shift and NOE data for A beta(1-40)Met(O) strongly suggest the presence of a helical region between residues 16 and 24. This is supported by slow H-D exchange of amide protons in this region and by structure calculations using simulated annealing with the program XPLOR. The remainder of the structure is relatively disordered. Our previously reported NMR data for A beta(1-40) in the same solvent shows that helices are present over residues 15-24 (helix 1) and 28-36 (helix 2), Oxidation of Met35 thus causes a local and selective disruption of helix 2. In addition to this helix-coil rearrangement in aqueous micelles, the CD data show that oxidation inhibits a coil-to-beta-sheet transition in water. These significant structural rearrangements in the C-terminal region of A beta may be important clues to the chemistry and biology of A beta(1-40) and A beta(1-42).
Resumo:
Phosphorylation of the tumor suppressor p53 is generally thought to modify the properties of the protein in four of its five independent domains. We used synthetic peptides to directly study the effects of phosphorylation on the non-sequence-specific DNA binding and conformation of the C-terminal, basic domain. The peptides corresponded to amino acids 361-393 and were either nonphosphorylated or phosphorylated at the protein kinase C (PKC) site, Ser378, or the casein kinase II (CKII) site, Ser392, or bis-phosphorylated on both the PKC and the CKII sites. A fluorescence polarization analysis revealed that either the recombinant p53 protein or the synthetic peptides bound to two unrelated target DNA fragments. Phosphorylation of the peptide at the PKC or the CKII sites clearly decreased DNA binding, and addition of a second phosphate group almost completely abolished binding. Circular dichroism spectroscopy showed that the peptides assumed identical unordered structures in aqueous solutions. The unmodified peptide, unlike the Ser378 phosphorylated peptide, changed conformation in the presence of DNA. The inherent ability of the peptides to form an alpha-helix could be detected when circular dichroism and nuclear magnetic resonance spectra were: taken in trifluoroethanol-water mixtures. A single or double phosphorylation destabilized the helix around the phosphorylated Ser378 residue but stabilized the helix downstream in the sequence.
Resumo:
Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+-activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5 (+/- 0.1) Angstrom. In the X-ray absorption spectrum of Mn2+-activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k less than or equal to 12 Angstrom(-1) by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15 Angstrom, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5 Angstrom, is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+-activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.
Resumo:
There is a growing body of data on avian eyes, including measurements of visual pigment and oil droplet spectral absorption, and of receptor densities and their distributions across the retina. These data are sufficient to predict psychophysical colour discrimination thresholds for light-adapted eyes, and hence provide a basis for relating eye design to visual needs. We examine the advantages of coloured oil droplets, UV vision and tetrachromacy for discriminating a diverse set of avian plumage spectra under natural illumination. Discriminability is enhanced both by tetrachromacy and coloured oil droplets. Oil droplets may also improve colour constancy. Comparison of the performance of a pigeon's eye, where the shortest wavelength receptor peak is at 410 nm, with that of the passerine Leiothrix, where the ultraviolet-sensitive peak is at 365 nm, generally shows a small advantage to the latter, but this advantage depends critically on the noise level in the sensitivity mechanism and on the set of spectra being viewed.
Resumo:
The irregular vibronic structure in the S-1<--S-0 resonant two-photon ionization (R2PI) spectrum of supersonically cooled triptycene is a result of a classic Exe Jahn-Teller effect [A. Furlan et al., J. Chem. Phys. 96, 7306 (1992)]. This is well characterized and can be used as an effective probe of intramolecular perturbations. Here we examine the S-1<--S-0 R2PI spectrum of 9-hydroxytriptycene and the fluorescence from various excited state vibronic levels. In this system the pseudorotation of the Jahn-Teller vibration is strongly coupled to the torsional motion of the bridgehead hydroxy group. This torsional motion results in a tunneling splitting in both the ground and excited states. The population of the upper level in the ground electronic state results in additional vibronic transitions becoming symmetry allowed in the R2PI spectrum that are forbidden in the bare triptycene molecule. The assignment of the R2PI and fluorescence spectra allows the potential energy surfaces of these vibrational modes to be accurately quantified. The full C-3v vibronic point group must be used to interpret the spectra. The time scale of the internal rotation of the-OH group and the butterfly flapping of the Jahn-Teller pseudorotation are of similar magnitude. The tunneling between the nine minima on the three dimensional potential energy surface is such that the Jahn-Teller pseudorotation occurs in concert with the-OH internal rotation. The Berry phase that is acquired during this motion is discussed. The simple physical picture emerges of the angle between two of the three benzene moieties opening in three equivalent ways in the S-1 electronic state. This geometry follows the position of the hydroxy group, which preferentially orients itself to point between these two rings. (C) 1998 American Institute of Physics. [S0021-9606(98)02348-4].
Resumo:
We investigate the X-ray properties of the Parkes sample of Bat-spectrum radio sources using data from the ROSAT All-Sky Survey and archival pointed PSPC observations. In total, 163 of the 323 sources are detected. For the remaining 160 sources, 2 sigma upper limits to the X-ray flux are derived. We present power-law photon indices in the 0.1-2.4 keV energy band for 115 sources, which were determined either with a hardness ratio technique or from direct fits to pointed PSPC data if a sufficient number of photons were available. The average photon index is <Gamma > = 1.95(-0.12)(+0.13) for flat-spectrum radio-loud quasars, <Gamma > = 1.70(-0.24)(+0.23) for galaxies, and <Gamma > = 2.40(-0.31)(+0.12) for BL Lac objects. The soft X-ray photon index is correlated with redshift and with radio spectral index in the sense that sources at high redshift and/or with flat (or inverted) radio spectra have flatter X-ray spectra on average. The results are in accord with orientation-dependent unification schemes for radio-loud active galactic nuclei. Webster et al. discovered many sources with unusually red optical continua among the quasars of this sample, and interpreted this result in terms of extinction by dust. Although the X-ray spectra in general do not show excess absorption, we find that low-redshift optically red quasars have significantly lower soft X-ray luminosities on average than objects with blue optical continua. The difference disappears for higher redshifts, as is expected for intrinsic absorption by cold gas associated with the dust. In addition, the scatter in log(f(x)/f(o)) is consistent with the observed optical extinction, contrary to previous claims based on optically or X-ray selected samples. Although alternative explanations for the red optical continua cannot be excluded with the present X-ray data, we note that the observed X-ray properties are consistent with the idea that dust plays an important role in some of the radio-loud quasars with red optical continua.
Resumo:
A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.
Resumo:
In order to evaluate the capability of H-1 MRS to monitor longitudinal changes in subjects with probable Alzheimer's disease (AD), the temporal stability of the metabolite measures N-acetylaspartate and N-acetylas-partylglutamate (NA), total Creatine (Cr), myo-Inositol (mI), total Choline (Chol), NA/Cr, mI/Cr, Chol/Cr and NA/mI were investigated in a cohort of normal older adults. Only the metabolite measures NA, mi, Cr, NA/Cr, mI/Cr, and NA/mI were found to be stable after a mean interval of 260 days. Relative and absolute metabolite measures from a cohort of patients with probable AD were subsequently compared with data from a sample of normal older adult control subjects, and correlated with mental status and the degree of atrophy in the localized voxel. Concentrations of NA, NA/Cr, and NA/mI were significantly reduced in the AD group with concomitant significant increases in mi and mI/Cr. There were no differences between the two groups in measures of Cr, Chol, or Chol/Cr. Significant correlations between mental status as measured by the Mini-Mental State Examination and NA/mI, mI/Cr and NA were found. These metabolite measures were also significantly correlated with the extent of atrophy (as measured by CSF and GM composition) in the spectroscopy voxel. (C) 1999 Elsevier Science Inc.
Resumo:
An order of magnitude sensitivity gain is described for using quasar spectra to investigate possible time or space variation in the fine structure constant alpha. Applied to a sample of 30 absorption systems, spanning redshifts 0.5 < z < 1.6, we derive limits on variations in alpha over a wide range of epochs. For the whole sample, Delta alpha/alpha = (-1.1 +/- 0.4) x 10(-5). This deviation is dominated by measurements at z > 1, where Delta alpha/alpha = (-1.9 +/- 0.5) x 10(-5). For z < 1, Delta alpha/alpha = (-0.2 +/- 0.4) x 10(-5). While this is consistent with a time-varying alpha, further work is required to explore possible systematic errors in the data, although careful searches have so far revealed none.
Resumo:
The Parkes Half-Jansky Flat-Spectrum Sample contains a large number of sources with unusually red optical-to-near-infrared (NIR) continua. If this is to be interpreted as extinction by dust in the line of sight, then associated material might also give rise to absorption in the soft X-ray regime. This hypothesis is tested using broadband (0.1-2.4 keV) data from the ROSAT All-Sky Survey. Significant (>3 sigma confidence level) correlations between the optical (and NIR)-to-soft X-ray continuum slope and optical extinction are found in the data, consistent with absorption by material with metallicity and a range in the gas-to-dust ratio as observed in the local ISM. Under this simple model, the soft X-rays are absorbed at a level consistent with the range of extinctions (0 < A(V) < 6 mag) implied by the observed optical reddening. Excess X-ray absorption by warm (ionized) gas, (i.e., a warm absorber) is not required by the data.
Resumo:
We describe a sample of 13 bright (18.5 < B-J < 20.1), compact galaxies at low redshift (0.05 < z < 0.21) behind the Fornax Cluster. These galaxies are unresolved on UK Schmidt sky survey plates, and so they would be missing from most galaxy catalogs compiled from this material. The objects were found during initial observations of The Fornax Spectroscopic Survey. This project is using the Two-degree Field spectrograph on the Anglo-Australian Telescope to obtain spectra for a complete sample of all 14,000 objects, stellar and nonstellar, with 16.5 < B-J < 19.7, in a 12 deg(2) area centered on the Fornax Cluster of galaxies. The surface density of compact galaxies with magnitudes 16.5 < B-J < 19.7 is 7 +/- 3 deg(-2), representing 2.8% +/- 1.6% of all local (z < 0.2) galaxies to this limit. There are 12 +/- 3 deg(-2) with 16.5 < B-J < 20.2. They are luminous (-21.5 < M-B < -18.0, for H-o = 50 km s(-1) Mpc(-1)), and most have strong emission lines (H alpha equivalent widths of 40-200 Angstrom) and small sizes typical of luminous H II galaxies and compact narrow emission line galaxies. Four out of 13 have red colors and early-type spectra, and so they are unlikely to have been detected in any previous surveys.
Resumo:
We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.