996 resultados para MICELLAR SOLUTIONS
Resumo:
Introduction
As general practice (GP) is the main source of referrals to neurologists, neurology education for GP trainees is important. We investigated the existence of neurophobia, contributing factors and potential prevention strategies among GP trainees.
MethodsIn a questionnaire survey interest, knowledge, confidence and perceived difficulty in neurology were compared with different medical specialties. Reasons for difficulty with neurology, postgraduate neurology education experience, learning methods and suggested teaching improvements were examined.
ResultsOf 205 GP trainees, 118 (58%) completed the questionnaire. Threshold analyses justified categorical intervals for the Likert responses. Trainees recorded poorer knowledge (p < 0.001), less confidence (p < 0.001) and more perceived difficulty (p < 0.001) with neurology than with any other medical specialty. GP trainees had less interest in neurology than any other medical specialty (Duncan test, p < 0.001). There was a similar gradation in difficulty and confidence perception across medical specialties. Hospital and community-based neurology teaching was graded as “poor” or “very poor” by over 60% of GP trainees. There were multiple perceived causes of neurophobia, including neuroanatomy and poor quality teaching. More organised clinical teaching and referral guidance were suggested to address GP neurophobia.
ConclusionsNeurophobia is common among GP trainees in Northern Ireland. GP trainees have clear and largely uniform ideas on improving their neurology education. GP training posts should reflect the importance of neurology within the GP curriculum.
Resumo:
Herein, we present a facile method for the formation of monodispersed metal nanoparticles (NPs) at room temperature from M(III)Cl3 (with M = Au, Ru, Mn, Fe or V) in different media based on N,N-dimethylformamide (DMF) or water solutions containing a protic ionic liquid (PIL), namely the octylammonium formate (denoted OAF) or the bis(2-ethyl-hexyl)ammonium formate (denoted BEHAF). These two PILs present different structures and redox-active structuring properties that influence their interactions with selected molecular compounds (DMF or water), as well as the shape and the size of formed metal NPs in these solutions. Herein, the physical properties, such as the thermal, transport and micellar properties, of investigated PIL solutions were firstly investigated in order to understand the relation between PILs structure and their properties in solutions with DMF or water. The formation of metal NPs in these solutions was then characterized by using UV–vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements. From our investigations, it appears that the PILs structure and their aggregation pathways in selected solvents affect strongly the formation, growths, the shape and the size of metal NPs. In fact by using this approach, the shape-/size-controlled metal NPs can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.
Resumo:
The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.
Resumo:
The general practitioner (GP) is in a pivotal position to initiate and adapt care for their patients living with dementia. This study aimed to elicit GPs' perceptions of the potential barriers and solutions to the provision of good-quality palliative care in dementia in their practices. A postal survey of GPs across Northern Ireland was conducted with open-ended items soliciting for barriers in their practices and possible solutions; 40.6% (138/340) were returned completed. Barriers to palliative care in dementia were perceived to be a dementia knowledge deficit for healthcare staff and the public, a resource shortfall within the GP practice and community, poor team coordination alongside inappropriate dementia care provision, and disagreements from and within families. These findings have significant implications for educators and clinicians as enhanced dementia education and training were highlighted as a strong agenda for GPs with the suggestions of dementia awareness programmes for the public.
Resumo:
Herein, we report the densities and speeds of sound in binary mixtures of three hydrophobic and one hydrophilic ionic liquids: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C4mim][NTf2], 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, [C4mpyr][NTf2], 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C3mim][NTf2] and 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SCN], with water at 298.15 K and 0.1 MPa. The concentration range of water, which encompassed relatively small values well below the saturation point, is often regarded as an impurity for hydrophobic ionic liquids. On the basis of experimental results the molar volume, adiabatic molar compressibility, partial molar volume and apparent molar volume, as well as, partial molar and apparent molar isentropic compressibility properties were then calculated. Interesting results are obtained using the solutions based on the hydrophilic [C2mim][SCN], since these mixtures are characterized by relatively low density and high values of speed of sound. Furthermore, the partial molar volumes and partial molar adiabatic compressibilities of water in solution with [C2mim][SCN] are the lowest among the investigated in mixtures with ionic liquids. However, in the case of the hydrophobic ionic liquid solutions, only small differences are observed for molar adiabatic compressibilities with the change of the cation structure, i.e. for water + [C4mim][NTf2] or + [C4mpyr][NTf2]. A more pronounced difference has been observed for the partial molar compressibility of water in solutions with these two ionic liquids.
Resumo:
Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.
Resumo:
For the reliable analysis and modeling of astrophysical, laser-produced, and fusion plasmas, atomic data are required for a number of parameters, including energy levels, radiative rates, and electron impact excitation rates. Such data are desired for a range of elements (H to W) and their many ions. However, measurements of atomic data, mainly for radiative and excitation rates, are not feasible for many species, and therefore, calculations are needed. For some ions (such as of C, Fe, and Kr), there is a variety of calculations available in the literature, but often, they differ significantly from one another. Therefore, there is a great demand from the user community to have data "assessed" for accuracy so that they can be confidently applied to the modeling of plasmas. In this paper we highlight the difficulties in assessing atomic data and offer some solutions for improving the accuracy of calculated results.
Resumo:
In this study we have investigated the uptake and distribution of arsenic (As) and phosphate (Pi) in roots, shoots, and grain of wheat grown in an uncontaminated soil irrigated with solutions containing As at three different concentrations (0.5, 1 and 2 mg l-1) and in the presence or in the absence of P fertilization. Arsenic in irrigation water reduced plants growth and decreased grain yield. When Pi was not added (P-), plants were more greatly impacted compared to the plus Pi (P+) treatments. The differences in mean biomass between P- and P+ treatments at the higher As concentrations demonstrated the role of Pi in preventing As toxicity and growth inhibition. Arsenic concentrations in root, shoot and grain increased with increasing As concentration in irrigation water. It appears that P fertilization minimizes the translocation of As to the shoots and grain whilst enhancing P status of plant. The observation that P fertilization minimises the translocation of arsenic to the shoots and grain is interesting and may be useful for certain regions of the world that has high levels of As in groundwater or soils. © 2008 Springer Science+Business Media B.V.
Consequences and solutions to our abysmal neglect of the bond-slip be-haviour in reinforced concrete
Resumo:
Na+ near membranes controls our nerve signals, besides several other crucial bioprocesses. We demonstrate that fluorescent PET (photoinduced electron transfer) sensor molecules target Na+ in nanospaces near micellar membranes with excellent discrimination against H+. They find that Na+ near anionic micelles is concentrated by factors of upto 160. Sensor molecules which are not held tight to the micelle surface find a Na+ amplification factor of 8 only. These findings are strengthened by the employment of control compounds whose PET processes are permanently ‘on’ or permanently ‘off’.
Resumo:
In this paper we study the well-posedness for a fourth-order parabolic equation modeling epitaxial thin film growth. Using Kato's Method [1], [2] and [3] we establish existence, uniqueness and regularity of the solution to the model, in suitable spaces, namelyC0([0,T];Lp(Ω)) where with 1<α<2, n∈N and n≥2. We also show the global existence solution to the nonlinear parabolic equations for small initial data. Our main tools are Lp–Lq-estimates, regularization property of the linear part of e−tΔ2 and successive approximations. Furthermore, we illustrate the qualitative behavior of the approximate solution through some numerical simulations. The approximate solutions exhibit some favorable absorption properties of the model, which highlight the stabilizing effect of our specific formulation of the source term associated with the upward hopping of atoms. Consequently, the solutions describe well some experimentally observed phenomena, which characterize the growth of thin film such as grain coarsening, island formation and thickness growth.