854 resultados para MEMBRANE ELEVATION
Resumo:
This study was aimed at investigating the in vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT). Osteoblastic cells were obtained from human alveolar bone fragments and cultured under standard osteogenic condition until subconfluence. First passaged cells were cultured on P(VDF-TrFE)/BT and expanded polytetrafluoroethylene (e-PTFE - control) membranes in 24-well plates. Cell adhesion and spreading were evaluated at 30 min, and 4 and 24 h. For proliferation assay, cells were cultured for 1, 7, and 10 days. Cell viability was detected by trypan blue at 7 and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 7, 14, and 21 days. Cultures were stained with Alizarin red at 21 days, for detection of mineralized matrix. Data were compared by ANOVA and Student t test. Cell attachment (p = 0.001), cell number (p = 0.001), and ALP activity (p = 0.0001) were greater on P(VDF-TrFE)/BT. Additionally, doubling time was greater on P(VDF-TrFE)/BT (p = 0.03), indicating a decreased proliferation rate. Bone-like nodule formation took place only on P(VDF-TrFE)/BT. The present results showed that both membranes are biocompatible. However, P(VDF-TrFE)/BT presented a better in vitro biocompatibility and allowed bone-like nodule formation. Therefore, P(VDF-TrFE)/BT could be an alternative membrane to be used in guided tissue regeneration. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
Resumo:
ESR spectra of spin probes were used to monitor lipid-protein interactions in native and cholesterol-enriched microsomal membranes. In both systems composite spectra were obtained, one characteristic of bulk bilayer organization and another due to a motionally restricted population, which was ascribed to lipids in a protein microenvironment. Computer spectral subtractions revealed that cholesterol modulates the order/mobility of both populations in opposite ways, i.e., while the lipid bilayer region gives rise to more anisotropic spectra upon cholesterol enrichment, the spectra of the motionally restricted population become indicative of increased mobility and/or decreased order. These events were evidenced by measurement of both effective order parameters and correlation times. The percentages of the motionally restricted component were invariant in native and cholesterol-enriched microsomes. Variable temperature studies also indicated a lack of variation of the percentages of both spectral components, suggesting that the motionally restricted one was not due to protein aggregation. The results correlate well with the effect of cholesterol enrichment on membrane-bound enzyme kinetics and on the behavior of fluorescent probes [Castuma & Brenner (1986) Biochemistry 25, 4733-4738]. Several hypothesis are put forward to explain the molecular mechanism of the cholesterol-induced spectral changes.
Resumo:
Created periodontal defects in dogs were randomly assigned for experimental (Guidor bioresorbable membranes) or control (conventional therapy) treatment the results showed that the new connective issue attachment was significantly greater in test sites than in controls. This new attachment averaged 2.79 +/- 0.74 mm and 1.47 +/- 0.20 mm at test and control sites, respectively (P < 0.05). Epithelial downgrowth was also reduced in the test sites (P < 0.05). No differences in bone response were found. The bioresorbable barrier was effective in blocking gingival epithelial downgrowth and connective tissue proliferation, promoting new attachment according to the principles of guided tissue regeneration.
Resumo:
A new method is described for the rapid, sensitive, virtually interference-free, and selective quantitation of cyanogenic glycosides in aqueous extracts using membrane introduction mass spectrometry (MIMS). Selective monitoring, by either conventional MIMS or cryotrap-MIMS, not of HCN but of the co-released ketones (acetone and butan-2-one), when performed for both the crude cassava extracts and the linamarase-NaOH-hydrolyzed extracts, is found to offer an advantageous alternative to classic spectrophotometric methods based on HCN analysis for the selective quantitation of the two cyanogenic glycosides linamarin and lotaustralin expressed as both the free HCN content and the total cyanogenic potential (total HCN).
Resumo:
To gain a fuller understanding of the regions of the Staphylococcus aureus alpha-toxin important in pore formation, we have used Forster dipole-dipole energy transfer to demonstrate that a central glycine-rich region of alpha-toxin (the so-called ''hinge'' region) inserts deeply into the bilayer on association of toxin with liposomes. Mutant alpha-toxins with unique cysteine (C) residues at positions 69 and 130 [Palmer, M., et al. (1993) J. Biol. Chem. 268, 11959) were reacted with the C-specific fluorophore acrylodan, which acted as an energy donor. The chosen acceptor was N-(7-nitrobenz-2-oxa-13-diazol-4-yl)-1,2-bis(hexadecanoyl) -sn-glycero-3-phosphoethanolamine (NBD-PE). Measurement of the degree of donor quenching with increasing NBD-PE in the inner bilayer leaflet enables the distance of closest approach between donor and acceptor to be estimated. For toxin labeled with acrylodan at position 130 (in the hinge region), this distance is approximately 5 +/- 2 Angstrom, showing that the probe is close to the inner surface of the liposomes. A second probe labeled at position 69 (in the N-terminal domain) shows negligible energy transfer, indicating a distance of closest approach >40 Angstrom. This implies that this N-terminal region remains ''outside'' the liposome. We propose a model in which the central region of the alpha-toxin inserts into the membrane and possibly participates in forming the wall of the pore.
Resumo:
1. To study the long term course of passive Heymann nephritis (PHN), 42 adult male Wistar rats were injected with rabbit anti-FX1A serum (PHN group) and 42 rats received normal rabbit serum (control group). Two animals from each group were sacrificed 2 weeks after the inoculation and 10 animals each from the control and PHN groups were sacrificed 4, 13, 25 and 53 weeks later.2. The PHN group exhibited a significant elevation in 20-h proteinuria which lasted from the first week (control group, 9.19 +/- 0.87; PHN group, 25.3 +/- 2.66) to the 25th week (control group, 22.6 +/- 2.15; PHN group, 66.7 +/- 10.4) except for week 17. From week 29 to week 53 there was no statistical difference between the 2 groups.3. Light microscopy showed no difference between the kidneys of PHN and control rats. Immunofluorescence microscopy in PHN rats showed granular deposition of autologous and heterologous IgG on the glomerular basement membrane (GBM), whose intensity and pattern did not change during 53 weeks of observation.4. When examined by electron microscopy the glomeruli of PHN rats showed: a) electron-dense deposits which were initially subepithelial and homogeneous and later intramembranous, granular and often surrounded by an electron-transparent halo; b) focal thickening of the GBM at the sites of intramembranous deposits; c) effacement of podocytes located close to the deposits; d) penetration of the podocytes into the GBM associated with the deposits; e) presence of osmiophilic granules in the cytoplasm of the podocyte located inside the GBM similar to the granules of the deposits next to them. The association of the penetration of the podocytes into the GBM with the deposits and the presence of the osmiophilic granules inside the foot process have not been described previously in PHN.5. The results suggest that the podocytes play a role in the clearing of intramembranous deposits in PHN.