942 resultados para MACROPHAGE INFLAMMATORY PROTEIN-1-ALPHA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiplicity of cell death mechanisms induced by neonatal hypoxia-ischemia makes neuroprotective treatment against neonatal asphyxia more difficult to achieve. Whereas the roles of apoptosis and necrosis in such conditions have been studied intensively, the implication of autophagic cell death has only recently been considered. Here, we used the most clinically relevant rodent model of perinatal asphyxia to investigate the involvement of autophagy in hypoxic-ischemic brain injury. Seven-day-old rats underwent permanent ligation of the right common carotid artery, followed by 2 hours of hypoxia. This condition not only increased autophagosomal abundance (increase in microtubule-associated protein 1 light chain 3-11 level and punctuate labeling) but also lysosomal activities (cathepsin D, acid phosphatase, and beta-N-acetylhexosaminidase) in cortical and hippocampal CA3-damaged neurons at 6 and 24 hours, demonstrating an increase in the autophagic flux. In the cortex, this enhanced autophagy may be related to apoptosis since some neurons presenting a high level of autophagy also expressed apoptotic features, including cleaved caspase-3. On the other hand, enhanced autophagy in CA3 was associated with a more purely autophagic cell death phenotype. In striking contrast to CA3 neurons, those in CA1 presented only a minimal increase in autophagy but strong apoptotic characteristics. These results suggest a role of enhanced autophagy in delayed neuronal death after severe hypoxia-ischemia that is differentially linked to apoptosis according to the cerebral region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the role played by chemokines in the selective homing of immune cells, we sought to characterize the profile of chemokines produced by human dendritic cells (DC) following in vitro Aspergillus fumigatus infection and their ability to recruit cells involved in the antifungal defense. At the onset of A. fumigatus infection, DC released elevated amounts of CXCL8 that promote the migration of polymorphonuclear cells (PMN). Moreover, soluble factors released from A. fumigatus-infected DC increased also the surface expression of two activation markers, CD11b and CD18, on PMN. A. fumigatus infection resulted also in CCL3, CCL4, CXCL10 and CCL20 productions that induce the migration of effector memory Th1 cells. Moreover, the late expression of CCL19 suggests that A. fumigatus-infected DC could be implicated in the migration of CCR7+ naïve T cells and mature DC in lymph nodes. Together these results suggested the involvement of human DC in the regulation of innate and adaptive immunity against A. fumigatus through the recruitment of cells active in the fungal destruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retinal pigment epithelium (RPE) is constantly exposed to external injuries which lead to degeneration, dysfunction or loss of RPE cells. The balance between RPE cells death and proliferation may be responsible for several diseases of the underlying retina, including age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Signaling pathways able to control cells proliferation or death usually involve the MAPK (mitogen-activated protein kinases) pathways, which modulate the activity of transcription factors by phosphorylation. UV exposure induces DNA breakdown and causes cellular damage through the production of reactive oxygen species (ROS) leading to programmed cell death. In this study, human retinal pigment epithelial cells ARPE19 were exposed to 100 J/m(2) of UV-C and MAPK pathways were studied. We first showed the expression of the three major MAPK pathways. Then we showed that activator protein-1 (AP-1) was activated through phosphorylation of cJun and cFos, induced by JNK and p38, respectively. Specific inhibitors of both kinases decreased their respective activities and phosphorylation of their nuclear targets (cJun and cFos) and reduced UV-induced cell death. The use of specific kinases inhibitors may provide excellent tools to prevent RPE apoptosis specifically in RPE diseases involving ROS and other stress-related compounds such as in AMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY AND PRINCIPLES: Estimating glomerular filtration rate (GFR) in hospitalised patients with chronic kidney disease (CKD) is important for drug prescription but it remains a difficult task. The purpose of this study was to investigate the reliability of selected algorithms based on serum creatinine, cystatin C and beta-trace protein to estimate GFR and the potential added advantage of measuring muscle mass by bioimpedance. In a prospective unselected group of patients hospitalised in a general internal medicine ward with CKD, GFR was evaluated using inulin clearance as the gold standard and the algorithms of Cockcroft, MDRD, Larsson (cystatin C), White (beta-trace) and MacDonald (creatinine and muscle mass by bioimpedance). 69 patients were included in the study. Median age (interquartile range) was 80 years (73-83); weight 74.7 kg (67.0-85.6), appendicular lean mass 19.1 kg (14.9-22.3), serum creatinine 126 μmol/l (100-149), cystatin C 1.45 mg/l (1.19-1.90), beta-trace protein 1.17 mg/l (0.99-1.53) and GFR measured by inulin 30.9 ml/min (22.0-43.3). The errors in the estimation of GFR and the area under the ROC curves (95% confidence interval) relative to inulin were respectively: Cockcroft 14.3 ml/min (5.55-23.2) and 0.68 (0.55-0.81), MDRD 16.3 ml/min (6.4-27.5) and 0.76 (0.64-0.87), Larsson 12.8 ml/min (4.50-25.3) and 0.82 (0.72-0.92), White 17.6 ml/min (11.5-31.5) and 0.75 (0.63-0.87), MacDonald 32.2 ml/min (13.9-45.4) and 0.65 (0.52-0.78). Currently used algorithms overestimate GFR in hospitalised patients with CKD. As a consequence eGFR targeted prescriptions of renal-cleared drugs, might expose patients to overdosing. The best results were obtained with the Larsson algorithm. The determination of muscle mass by bioimpedance did not provide significant contributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excitotoxic insults induce c-Jun N-terminal kinase (JNK) activation, which leads to neuronal death and contributes to many neurological conditions such as cerebral ischemia and neurodegenerative disorders. The action of JNK can be inhibited by the D-retro-inverso form of JNK inhibitor peptide (D-JNKI1), which totally prevents death induced by N-methyl-D-aspartate (NMDA) in vitro and strongly protects against different in vivo paradigms of excitotoxicity. To obtain optimal neuroprotection, it is imperative to elucidate the prosurvival action of D-JNKI1 and the death pathways that it inhibits. In cortical neuronal cultures, we first investigate the pathways by which NMDA induces JNK activation and show a rapid and selective phosphorylation of mitogen-activated protein kinase kinase 7 (MKK7), whereas the only other known JNK activator, mitogen-activated protein kinase kinase 4 (MKK4), was unaffected. We then analyze the action of D-JNKI1 on four JNK targets containing a JNK-binding domain: MAPK-activating death domain-containing protein/differentially expressed in normal and neoplastic cells (MADD/DENN), MKK7, MKK4 and JNK-interacting protein-1 (IB1/JIP-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PSIP1 (PC4 and SFRS1 interacting protein 1) encodes two splice variants: lens epithelium-derived growth factor or p75 (LEDGF/p75) and p52. PSIP1 gene products were shown to be involved in transcriptional regulation, affecting a plethora of cellular processes, including cell proliferation, cell survival, and stress response. Furthermore, LEDGF/p75 has implications for various diseases and infections, including autoimmunity, leukemia, embryo development, psoriasis, and human immunodeficiency virus integration. Here, we reported the first characterization of the PSIP1 promoter. Using 5' RNA ligase-mediated rapid amplification of cDNA ends, we identified novel transcription start sites in different cell types. Using a luciferase reporter system, we identified regulatory elements controlling the expression of LEDGF/p75 and p52. These include (i) minimal promoters (-112/+59 and +609/+781) that drive the basal expression of LEDGF/p75 and of the shorter splice variant p52, respectively; (ii) a sequence (+319/+397) that may control the ratio of LEDGF/p75 expression to p52 expression; and (iii) a strong enhancer (-320/-207) implicated in the modulation of LEDGF/p75 transcriptional activity. Computational, biochemical, and genetic approaches enabled us to identify the transcription factor Sp1 as a key modulator of the PSIP1 promoter, controlling LEDGF/p75 transcription through two binding sites at -72/-64 and -46/-36. Overall, our results provide initial data concerning LEDGF/p75 promoter regulation, giving new insights to further understand its biological function and opening the door for new therapeutic strategies in which LEDGF/p75 is involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca(2+)-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca(2+) from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca(2+) microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, approximately 50 ms) Ca(2+) events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islet-Brain 1 (IB1) (also called JNK-interacting protein 1; JIP1) is a scaffold protein that tethers components of the JNK mitogen-activated protein kinase pathway inducing a modulation of the activity and the target specificity of the JNK kinases. Dysfunctions in IB1 have been associated with diseases such as early type II diabetes. To gain more insight in the functions of IB1, its ability to modulate the expression levels of the various JNK proteins was assessed. Each of the three JNK genes gives rise to several splice variants encoding short or long proteins. The expression levels of the short JNK proteins, but not of the long variants, were systematically higher in rat tissues and in transformed cell lines expressing high IB1 levels compared to tissues and cells with no or low IB1 expression. HEK293 cells bearing a tetracycline-inducible IB1 construct showed a specific increase of the short JNK endogenous splice variants in the presence of tetracycline. The augmented expression level of the short JNK splice variants induced by IB1 resulted from an increased stability towards degradation. Modulation of the stability of specific JNK splice variants represents therefore a newly identified mechanism used by IB1 to regulate the JNK MAPK pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a hemolytic plaque assay for insulin to determine whether the same pancreatic B cells respond to D-glucose, 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and the association of this nonmetabolized analogue of L-leucine with either the monomethyl ester of succinic acid (SME) or the dimethyl ester of L-glutamic acid (GME). During a 30-min incubation in the absence of D-glucose, BCH alone (5 mM) had no effect on insulin release. In contrast, the combination of BCH with either SME (10 mM) or GME (3 mM) stimulated insulin release to the same extent observed in the sole presence of 16.7 mM D-glucose. The effects of BCH plus SME and BCH plus GME on both percentage of secreting B cells and total insulin output were little affected in the presence of D-glucose concentrations ranging from 0 to 16.7 mM. Varying the concentration of SME from 2 to 10 mM also did not influence these effects. In other experiments, the very same B cells were first exposed 45 min to 16.7 mM D-glucose, then incubated 45 min in the presence of only BCH and SME. Under these conditions, most (80.3 +/- 2.5%) of the cells contributing to insulin release did so during both incubation periods. Furthermore, virtually all cells responding to BCH and SME during the second incubation corresponded to cells also responsive to D-glucose during the first incubation. Similar observations were made when the sequence of the two incubations was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The elongase of long chain fatty acids family 6 (ELOVL6) is an enzyme that specifically catalyzes the elongation of saturated and monounsaturated fatty acids with 12, 14 and 16 carbons. ELOVL6 is expressed in lipogenic tissues and it is regulated by sterol regulatory element binding protein 1 (SREBP-1). OBJECTIVE: We investigated whether ELOVL6 genetic variation is associated with insulin sensitivity in a population from southern Spain. DESIGN: We undertook a prospective, population-based study collecting phenotypic, metabolic, nutritional and genetic information. Measurements were made of weight and height and the body mass index (BMI) was calculated. Insulin resistance was measured by homeostasis model assessment. The type of dietary fat was assessed from samples of cooking oil taken from the participants' kitchens and analyzed by gas chromatography. Five SNPs of the ELOVL6 gene were analyzed by SNPlex. RESULTS: Carriers of the minor alleles of the SNPs rs9997926 and rs6824447 had a lower risk of having high HOMA_IR, whereas carriers of the minor allele rs17041272 had a higher risk of being insulin resistant. An interaction was detected between the rs6824447 polymorphism and the intake of oil in relation with insulin resistance, such that carriers of this minor allele who consumed sunflower oil had lower HOMA_IR than those who did not have this allele (P = 0.001). CONCLUSIONS: Genetic variations in the ELOVL6 gene were associated with insulin sensitivity in this population-based study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1-/- mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several epidemiological studies have related an increase of lipids in the postprandial state to an individual risk for the development of CVD, possibly due to the increased plasma levels of TAG and fatty acids (FA) through enzymes of FA metabolism. The interaction between nutrition and the human genome determines gene expression and metabolic response. The aim of the present study was to evaluate the influence of a fat overload on the gene mRNA levels of lipogenic regulators in peripheral blood mononuclear cells (PBMC) from patients with the metabolic syndrome. The study included twenty-one patients with criteria for the metabolic syndrome who underwent a fat overload. Measurements were made before and after the fat overload of anthropometric and biochemical variables and also the gene mRNA levels of lipogenic factors. The main results were that the fat overload led to an increased mRNA levels of sterol regulatory element binding protein-1 (SREBP1), retinoid X receptor α (RXRα) and liver X receptor α (LXRα) in PBMC, and this increase was associated with the FA synthase (FASN) mRNA levels. We also found that TAG levels correlated with FASN mRNA levels. In addition, there was a positive correlation of SREBP1 with RXRα and of LXRα with the plasma lipoperoxide concentration. The fat overload led to an increase in regulators of lipogenesis in PBMC from patients with the metabolic syndrome.