1000 resultados para Long, Jake
Resumo:
Phosphate long lasting phosphorescence (LLP) phosphors with composition of (Zn1-xTmx)(2)P2O7 were prepared by the high-temperature solid-state method. Their properties were systematically investigated utilizing XRD, photoluminescence, phosphorescence and thermoluminescence (TL) spectra. These phosphors emit blue light that is related to the characteristic emission due to the D-1(2)-H-3(6), D-1(2)-H-3(4) and (1)G(4)-H-3(6) transitions of Tm3+. After the UV light excitation source was switched off, the bright blue long lasting phosphorescence can be observed which could last for more than 1 h in the limit of light perception of dark-adapted human eyes (0.32 mcd/m(2)). Two TL peaks at 336 K and 415 K appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.67 eV and 0.97 eV, respectively.Also, the mechanism was discussed in this report.
Resumo:
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+, Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f(6)5d(1)-S-8(7/2) transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.
Resumo:
The blue long-lasting phosphorescence (LLP) phenomenon was observed for Eu2+-doped SrO-B2O3 glasses prepared in the reducing atmosphere. The phosphorescence peaks at about 450 nm due to the 4f5d -> 4f transition of Eu2+. With the doping of different amounts of Eu2+, the concentration-quenching phenomenon was observed for both the LLP and photoluminescence of the glasses, and the critical concentration for the two cases was same, i.e., 0.02 mol% Eu2+. And by the investigation of the TL curves, the content of Eu2+ had an effect on the trap depth of the samples. At last the possible mechanism of the LLP of the samples was suggested.
Resumo:
Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2+ and Ce3+. The methods of photoluminescence, thermoluminescence and phosphorescence were used to study the samples, and possible mechanism was suggested. The co-doping of Ce3+ ions poisoned the phosphorescence emission of Eu2+ because of the competition to obtain the trapped electron. The phosphorescence of Ce3+ in the sample decays more quickly than that of Eu2+, which is suggested for the reason that the emission energy of Ce3+ is higher or the distance between Ce3+ and electron traps of the glasses is longer.
Resumo:
The near infrared long lasting phosphorescence of Yb3+ is observed in Yb3+ and Mn2+ codoped zinc borosilicate glasses. Compared with the glasses solely activated by Mn2+, when the Yb3+ ion is codoped, the red long lasting phosphorescence of the samples is largely improved in both brightness and persistent time but the photostimulated long lasting phosphorescence is greatly depressed. It is considered that the appearance of the phosphorescence of Yb3+ is due to the alteration of the energy transfer channel; additionally, Yb3+ also changes the trap depth of the glasses with the shallower trap predominating therefrom the red long lasting phosphorescence is improved and the photostimulated long lasting phosphorescence is degraded.
Resumo:
Anticorrosion performances of polyaniline emeraldine base/epoxy resin (EB/ER) coating on mild steel in 3.5% NaCl solutions of various pH values were investigated by electrochemical impedance spectroscopy (EIS) for 150 days. In neutral solution (pH 6.1), EB/ER coating offered very efficient corrosion protection with respect to pure ER coating, especially when EB content was 5-10%. The impedance at 0.1 Hz of the coating increased in the first 1-40 immersion days and then remained constant above 10(9) Omega cm(2) until 150 days, which in combination with the observation of a Fe2O3/Fe3O4 passive film formed on steel confirmed that the protection of EB was mainly anodic. In acidic or basic solution (pH 1 or 13), EB/ER coating also performed much better than pure ER coating. However, these media weakened the corrosion resistance due to breakdown of the passive film or deterioration of the ER binder.
Resumo:
A red long lasting phosphor Zn-3(PO4)(2): Mn2+ Ga3+ (ZPMG) was prepared by ceramic method, and phase conversion and spectral properties were investigated. Results indicated that the phase conversion from alpha-Zn-3(PO4), beta-Zn-3(PO4)(2) to gamma-Zn-3(PO4)(2) occurs with different manganese concentration incorporated and sinter process. The structural change induced by the phase transformation results in a remarkable difference in the spectral properties. The possible luminescence mechanism for this red LLP with different forms has been illustrated.
Resumo:
Novel pink light emitting long-lasting afterglow CdSiO3:SM3+ phosphors are prepared by the conventional high-temperature solid-state method and their luminescent properties are investigated. XRD and photolurflinescence (PL) spectra are used to characterize the synthesized phosphors. The phosphors are well crystallized by calcinations at 1050degreesC for 5 h. These phosphors emit pink light and show long-lasting phosphorescence after they are excited with 254 nm ultraviolet light. The phosphorescence lasts for nearly 5 h in the light perception of the dark-adapted human eye (0.32mcd/m(2)). The phosphorescence mechanism is also investigated. All the results indicate that these phosphors have promising potential practical applications.
Resumo:
We reported, for the first time to the best of our knowledge, the Sm3+ -doped yttriurn oxysulfide phosphors has reddish orange long-lasting phosphorescence. The phosphor show prominent luminescence in reddish orange due to the electronic transitions of (4)G(5/2) --> H-6(J) (J = 5/2, 7/2, 9/2), the afterglow color of this type of phosphors is a mixture of the three above mentioned electronic transition emissions and have a little different when the concentration of the Sm3+ dopant changes. Synthesis procedure of the Sm3+-yttrium oxysulfide reddish orange phosphor through the flux fusion method with binary flux compositions was presented. The synthesized phosphors were analyzed using X-ray diffraction (XRD) to interpret the structural characterization. The XRD analysis result reveal that the Y2O2S:Sm3+ phosphor synthesized with a binary flux composition containing (S and Na2CO3 at a ratio of 1: 1 at 30 wt.% of total raw material) at 1050degreesC for 3 h was in single-phase. Luminescence properties of the Y2O2S:Sm3+ long-lasting phosphor was analyzed by measuring the excitation spectra, emission spectra and afterglow decay curve. The mechanism of the strong afterglow from Y2O2S:Sm3+ was also discussed in this paper.
Resumo:
The aim of this presentation is to report a new result of afterglow materials. The Y2OS: Ln(3+) (Ln = Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sin(3+) and Tin(3+) in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the Irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method tinder 1050 degreesC, for 6 It have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be. useful in finding some new long-lasting phosphors with different colors.
Resumo:
A novel white light emitting long-lasting phosphor Cd1-xDyxSiO3 is reported in this letter. The Dy3+ doped CdSiO3 phosphor emits white light. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254 nm UV irradiation have been removed for about 30 min. In the emission spectrum of 5% Dy3+ doped CdSiO3 phosphor, there are two emission peaks of Dy3+, 580 mn (F-4(9/2)-->H-6(13/2)) and 486 nm (F-4(9/2)-->H-6(15/2)), as well as a broad band emission located at about 410 nm. All the three emissions form a white light with CIE chromaticity coordinates x=0.3874, y=0.3760 and the color temperature is 4000 K under 254 mn excitation. It indicated that this phosphor is a promising new luminescent material for practice application.
Resumo:
We observed that the SrMg2(PO4)(2):Eu phosphor could emit long life phosphorescence with the excitation light whose wavelength was shorter than 420 nm, however, when La, Ce, or Gd was codoped, the wavelength of the excitation light to cause the phosphorescence had a redshift of 40 nm. A possible mechanism and related discussion for this redshift phenomenon of the excitation light was given. It was suggested that the threshold between the trap and valence band was decreased with the addition of the codopants.
Resumo:
A facile, mild and rapid solid phase synthetic route free of column chromatographic purification to the synthesis of soluble monodisperse long-chain oligo(1,4-phenyleneethynylene)s is presented.
Resumo:
High resolution H-1 nuclear magnetic resonance ( NMR) spectroscopy has been employed to assess long-term toxicological effects of ChangLe (a kind of rare earth complex applied in agriculture). Male Wistar rats were administrated orally with ChangLe at doses of 0, 0.1, 0.2, 2.0, 10 and 20 mg/kg body weight daily, respectively, for 6 months. Urine was collected at-day 30, 60, go and serum samples were taken after 6 months. Many low-molecular weight metabolites were identified by H-1 NMR spectra of rat urine. A decrease in citrate and an increase in ketone bodies, creatinine, DMA, DMG, TMAO, and taurine in the urine of the rats. receiving high doses were found by H-1 NMR spectra. These may mean that high-dosage of ChangLe impairs the specific region of liver and kidney, such as renal tubule and mitochondria. The decrease in citrate and the increase in succinate and alpha-ketoglutarate were attributed to a combination of the inhibition of certain citric acid enzymes, renal tubular acidosis and the abnormal fatty acid catabolism. The information of the renal capillary necrosis could be derived from the increase in DMIA, DMG and TMAO. The increase in taurine was due to hepatic mitochondria dysfunction. The conclusions were supported by the results of biochemical measure. merits and enzymatic assay.
Resumo:
A series of novel indigo light emitting long-lasting phosphors CdSiO3: RE3+ (RE = Y, La, Gd, Lu) was prepared by the conventional high-temperature solid-state method. The XRD, photoluminescence (PL) spectra and afterglow intensity decay were used to characterize the synthesized phosphors. These phosphors emitted indigo light and showed long-lasting phosphorescence. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254-nm UV irradiation have been removed for more than 30 min.