891 resultados para Log-normal distribution
Resumo:
After bone fracture, various cellular activities lead to the formation of different tissue types, which form the basis for the process of secondary bone healing. Although these tissues have been quantified by histology, their material properties are not well understood. Thus, the aim of this study is to correlate the spatial and temporal variations in the mineral content and the nanoindentation modulus of the callus formed via intramembranous ossification over the course of bone healing. Midshaft tibial samples from a sheep osteotomy model at time points of 2, 3, 6 and 9 weeks were employed. PMMA embedded blocks were used for quantitative back scattered electron imaging and nanoindentation of the newly formed periosteal callus near the cortex. The resulting indentation modulus maps show the heterogeneity in the modulus in the selected regions of the callus. The indentation modulus of the embedded callus is about 6 GPa at the early stage. At later stages of mineralization, the average indentation modulus reaches 14 GPa. There is a slight decrease in average indentation modulus in regions distant to the cortex, probably due to remodelling of the peripheral callus. The spatial and temporal distribution of mineral content in the callus tissue also illustrates the ongoing remodelling process observed from histological analysis. Most interestingly the average indentation modulus, even at 9 weeks, remains as low as 13 GPa, which is roughly 60% of that for cortical sheep bone. The decreased indentation modulus in the callus compared to cortex is due to the lower average mineral content and may be perhaps also due to the properties of the organic matrix which might be different from normal bone.
Resumo:
Background Concern about skin cancer is a common reason for people from predominantly fair-skinned populations to present to primary care doctors. Objectives To examine the frequency and body-site distribution of malignant, pre-malignant and benign pigmented skin lesions excised in primary care. Methods This prospective study conducted in Queensland, Australia, included 154 primary care doctors. For all excised or biopsied lesions, doctors recorded the patient's age and sex, body site, level of patient pressure to excise, and the clinical diagnosis. Histological confirmation was obtained through pathology laboratories. Results Of 9650 skin lesions, 57·7% were excised in males and 75·0% excised in patients ≥50years. The most common diagnoses were basal cell carcinoma (BCC) (35·1%) and squamous cell carcinoma (SCC) (19·7%). Compared with the whole body, the highest densities for SCC, BCC and actinic keratoses were observed on chronically sun-exposed areas of the body including the face in males and females, the scalp and ears in males, and the hands in females. The density of BCC was also high on intermittently or rarely exposed body sites. Females, younger patients and patients with melanocytic naevi were significantly more likely to exert moderate/high levels of pressure on the doctor to excise. Conclusions More than half the excised lesions were skin cancer, which mostly occurred on the more chronically sun-exposed areas of the body. Information on the type and body-site distribution of skin lesions can aid in the diagnosis and planned management of skin cancer and other skin lesions commonly presented in primary care.
Resumo:
We explored the feasibility of community pharmacies for the distribution of chlamydia specimen self-collection kits, which featured a transport medium allowing postage of urine specimens in Australia. Eligible clients were requested to complete a code-matched risk-screening questionnaire in the pharmacy, and the derived risk scores were compared to the test results from the corresponding specimen. Four Queensland pharmacies distributed 156 kits, while 44 questionnaires and 18 specimens were received.
Resumo:
In this paper we consider the case of large cooperative communication systems where terminals use the protocol known as slotted amplify-and-forward protocol to aid the source in its transmission. Using the perturbation expansion methods of resolvents and large deviation techniques we obtain an expression for the Stieltjes transform of the asymptotic eigenvalue distribution of a sample covariance random matrix of the type HH† where H is the channel matrix of the transmission model for the transmission protocol we consider. We prove that the resulting expression is similar to the Stieltjes transform in its quadratic equation form for the Marcenko-Pastur distribution.
Resumo:
Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area highspeed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring’s regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion,this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.
Resumo:
This paper proposes a comprehensive approach to the planning of distribution networks and the control of microgrids. Firstly, a Modified Discrete Particle Swarm Optimization (MDPSO) method is used to optimally plan a distribution system upgrade over a 20 year planning period. The optimization is conducted at different load levels according to the anticipated load duration curve and integrated over the system lifetime in order to minimize its total lifetime cost. Since the optimal solution contains Distributed Generators (DGs) to maximize reliability, the DG must be able to operate in islanded mode and this leads to the concept of microgrids. Thus the second part of the paper reviews some of the challenges of microgrid control in the presence of both inertial (rotating direct connected) and non-inertial (converter interfaced) DGs. More specifically enhanced control strategies based on frequency droop are proposed for DGs to improve the smooth synchronization and real power sharing minimizing transient oscillations in the microgrid. Simulation studies are presented to show the effectiveness of the control.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.