981 resultados para Log cabins.
Resumo:
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.
Resumo:
The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Motivated by the recent proposal for the S-matrix in AdS(3) x S-3 with mixed three form fluxes, we study classical folded string spinning in AdS(3) with both Ramond and Neveu-Schwarz three form fluxes. We solve the equations of motion of these strings and obtain their dispersion relation to the leading order in the Neveu-Schwarz flux b. We show that dispersion relation for the spinning strings with large spin S acquires a term given by -root lambda/2 pi b(2) log(2) S in addition to the usual root lambda/pi log S term where root lambda is proportional to the square of the radius of AdS(3). Using SO(2, 2) transformations and re-parmetrizations we show that these spinning strings can be related to light like Wilson loops in AdS(3) with Neveu-Schwarz flux b. We observe that the logarithmic divergence in the area of the light like Wilson loop is also deformed by precisely the same coefficient of the b(2) log(2) S term in the dispersion relation of the spinning string. This result indicates that the coefficient of b(2) log(2) S has a property similar to the coefficient of the log S term, known as cusp-anomalous dimension, and can possibly be determined to all orders in the coupling lambda using the recent proposal for the S-matrix.
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
Electric field activated charge transport is studied in the metal/polymer/metal device structure of electropolymerized polypyrrole down to 10 K with varying carrier density and disorder. Disorder induced nonlinear behaviour is observed in polypyrrole devices grown at room temperature which is correlated to delocalization of states. The slope parameter of currentvoltage characteristics (in log-log scale) increases as the temperature decreases, which indicates the onset of stronger field dependence. The field dependence of mobility becomes dominant as the carrier density decreases. The sharp dip in differential conductance indicates the localization of carriers at low temperatures which reduces the effective number of carriers involved in the transport.
Resumo:
SrCrxFe12-xO19 (x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) hexaferrites were prepared by a microwave-hydrothermal method and subsequently sintered at 950 degrees C for 90 min using the microwave sintering method. The results show that, with increasing Cr3+ content, the lattice parameters changed anisotropically. The average grain sizes of sintered samples were in the range of 280 nm to 660 nm. The saturation magnetization systematically decreased with increasing Cr3+ doping, but the coercivity values increased. The electrical resistivity (log rho) decreased linearly with increasing temperature up to a certain temperature known as the transition temperature (T-c), and T-c decreased with further increase (x>0.5) of the Cr3+ content. This decrease in log rho and the activation energy (E-g) is due to electron hopping and occupancy of doped ions at different lattice sites. We found that the dielectric constant and dielectric loss for all the samples decreased with the Cr3+ content. The structural, magnetic, and electrical properties of Cr3+-doped SrFe12O19 hexaferrites have thus been investigated.
Resumo:
InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where R-i is a closed interval of the form a(i),b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of boxes in b-dimensional space. Although boxicity was introduced in 1969 and studied extensively, there are no significant results on lower bounds for boxicity. In this paper, we develop two general methods for deriving lower bounds. Applying these methods we give several results, some of which are listed below: 1. The boxicity of a graph on n vertices with no universal vertices and minimum degree delta is at least n/2(n-delta-1). 2. Consider the g(n,p) model of random graphs. Let p <= 1 - 40logn/n(2.) Then with high `` probability, box(G) = Omega(np(1 - p)). On setting p = 1/2 we immediately infer that almost all graphs have boxicity Omega(n). Another consequence of this result is as follows: For any positive constant c < 1, almost all graphs on n vertices and m <= c((n)(2)) edges have boxicity Omega(m/n). 3. Let G be a connected k-regular graph on n vertices. Let lambda be the second largest eigenvalue in absolute value of the adjacency matrix of G. Then, the boxicity of G is a least (kappa(2)/lambda(2)/log(1+kappa(2)/lambda(2))) (n-kappa-1/2n). 4. For any positive constant c 1, almost all balanced bipartite graphs on 2n vertices and m <= cn(2) edges have boxicity Omega(m/n).
Resumo:
We investigate into the limitations of the sum-product algorithm in the probability domain over graphs with isolated short cycles. By considering the statistical dependency of messages passed in a cycle of length 4, we modify the update equations for the beliefs at the variable and check nodes. We highlight an approximate log domain algebra for the modified variable node update to ensure numerical stability. At higher signal-to-noise ratios (SNR), the performance of decoding over graphs with isolated short cycles using the modified algorithm is improved compared to the original message passing algorithm (MPA).
Resumo:
This work considers the identification of the available whitespace, i.e., the regions that do not contain any existing transmitter within a given geographical area. To this end, n sensors are deployed at random locations within the area. These sensors detect for the presence of a transmitter within their radio range r(s) using a binary sensing model, and their individual decisions are combined to estimate the available whitespace. The limiting behavior of the recovered whitespace as a function of n and r(s) is analyzed. It is shown that both the fraction of the available whitespace that the nodes fail to recover as well as their radio range optimally scale as log(n)/n as n gets large. The problem of minimizing the sum absolute error in transmitter localization is also analyzed, and the corresponding optimal scaling of the radio range and the necessary minimum transmitter separation is determined.
Resumo:
Routing is a very important step in VLSI physical design. A set of nets are routed under delay and resource constraints in multi-net global routing. In this paper a delay-driven congestion-aware global routing algorithm is developed, which is a heuristic based method to solve a multi-objective NP-hard optimization problem. The proposed delay-driven Steiner tree construction method is of O(n(2) log n) complexity, where n is the number of terminal points and it provides n-approximation solution of the critical time minimization problem for a certain class of grid graphs. The existing timing-driven method (Hu and Sapatnekar, 2002) has a complexity O(n(4)) and is implemented on nets with small number of sinks. Next we propose a FPTAS Gradient algorithm for minimizing the total overflow. This is a concurrent approach considering all the nets simultaneously contrary to the existing approaches of sequential rip-up and reroute. The algorithms are implemented on ISPD98 derived benchmarks and the drastic reduction of overflow is observed. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The separation dimension of a graph G is the smallest natural number k for which the vertices of G can be embedded in R-k such that any pair of disjoint edges in G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F of total orders of the vertices of G such that for any two disjoint edges of G, there exists at least one total order in F in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on n vertices is Theta(log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree d is at most 2(9) (log*d)d. We also demonstrate that the above bound is nearly tight by showing that, for every d, almost all d-regular graphs have separation dimension at least d/2]
Resumo:
We analyse the hVV (V = W, Z) vertex in a model independent way using Vh production. To that end, we consider possible corrections to the Standard Model Higgs Lagrangian, in the form of higher dimensional operators which parametrise the effects of new physics. In our analysis, we pay special attention to linear observables that can be used to probe CP violation in the same. By considering the associated production of a Higgs boson with a vector boson (W or Z), we use jet substructure methods to define angular observables which are sensitive to new physics effects, including an asymmetry which is linearly sensitive to the presence of CP odd effects. We demonstrate how to use these observables to place bounds on the presence of higher dimensional operators, and quantify these statements using a log likelihood analysis. Our approach allows one to probe separately the hZZ and hWW vertices, involving arbitrary combinations of BSM operators, at the Large Hadron Collider.
Resumo:
The boxicity (cubicity) of a graph G is the minimum natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel unit cubes) in R-k. In this article, we give estimates on the boxicity and the cubicity of Cartesian, strong and direct products of graphs in terms of invariants of the component graphs. In particular, we study the growth, as a function of d, of the boxicity and the cubicity of the dth power of a graph with respect to the three products. Among others, we show a surprising result that the boxicity and the cubicity of the dth Cartesian power of any given finite graph is, respectively, in O(log d/ log log d) and circle dot(d/ log d). On the other hand, we show that there cannot exist any sublinear bound on the growth of the boxicity of powers of a general graph with respect to strong and direct products. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Conditions for the existence of heterochromatic Hamiltonian paths and cycles in edge colored graphs are well investigated in literature. A related problem in this domain is to obtain good lower bounds for the length of a maximum heterochromatic path in an edge colored graph G. This problem is also well explored by now and the lower bounds are often specified as functions of the minimum color degree of G - the minimum number of distinct colors occurring at edges incident to any vertex of G - denoted by v(G). Initially, it was conjectured that the lower bound for the length of a maximum heterochromatic path for an edge colored graph G would be 2v(G)/3]. Chen and Li (2005) showed that the length of a maximum heterochromatic path in an edge colored graph G is at least v(G) - 1, if 1 <= v(G) <= 7, and at least 3v(G)/5] + 1 if v(G) >= 8. They conjectured that the tight lower bound would be v(G) - 1 and demonstrated some examples which achieve this bound. An unpublished manuscript from the same authors (Chen, Li) reported to show that if v(G) >= 8, then G contains a heterochromatic path of length at least 120 + 1. In this paper, we give lower bounds for the length of a maximum heterochromatic path in edge colored graphs without small cycles. We show that if G has no four cycles, then it contains a heterochromatic path of length at least v(G) - o(v(G)) and if the girth of G is at least 4 log(2)(v(G)) + 2, then it contains a heterochromatic path of length at least v(G) - 2, which is only one less than the bound conjectured by Chen and Li (2005). Other special cases considered include lower bounds for the length of a maximum heterochromatic path in edge colored bipartite graphs and triangle-free graphs: for triangle-free graphs we obtain a lower bound of 5v(G)/6] and for bipartite graphs we obtain a lower bound of 6v(G)-3/7]. In this paper, it is also shown that if the coloring is such that G has no heterochromatic triangles, then G contains a heterochromatic path of length at least 13v(G)/17)]. This improves the previously known 3v(G)/4] bound obtained by Chen and Li (2011). We also give a relatively shorter and simpler proof showing that any edge colored graph G contains a heterochromatic path of length at least (C) 2015 Elsevier Ltd. All rights reserved.