973 resultados para Locally Advanced Head


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power deposition in the head of a user wearing metal-framed spectacles was calculated with a 450 MHz personal radio transmitting in close proximity. Peak tissue SAR in the head depended on lens shape whether circular half-rim or rectangular with 70 and 174% increases, respectively, compared to the spectacle-free case. However, localised screening occurred with square frames, with a 40% reduction of peak SAR in the eye closest to the antenna.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Vascular repair by marrow-derived endothelial progenitor cells (EPCs) is impaired during diabetes, although the precise mechanism of this dysfunction remains unknown. The hypothesis for the study was that progressive basement membrane (BM) modification by advanced glycation end products (AGEs) contributes to impairment of EPC reparative function after diabetes-related endothelial injury.

METHODS. EPCs isolated from peripheral blood were characterized by immunocytochemistry and flow cytometry. EPC interactions on native or AGE-modified fibronectin (AGE-FN) were studied for attachment and spreading, whereas chemotaxis to SDF-1 was assessed with the Dunn chamber assay. In addition, photoreactive agent-treated monolayers of retinal microvascular endothelial cells (RMECs) produced circumscribed areas of apoptosis and the ability of EPCs to “endothelialize” these wounds was evaluated.

RESULTS. EPC attachment and spreading on AGE-FN was reduced compared with control cells (P < 0.05–0.01) but was significantly restored by pretreatment with Arg-Gly-Asp (RGD). Chemotaxis of EPCs was abolished on AGE-FN but was reversed by treatment with exogenous RGD. On wounded RMEC monolayers, EPCs showed clustering at the wound site, compared with untreated regions (P < 0.001); AGE-FN significantly reduced this targeting response (P < 0.05). RGD supplementation enhanced EPC incorporation in the monolayer, as determined by EPC participation in tight junction formation and restoration of transendothelial electric resistance (TEER).

CONCLUSIONS. AGE-modification of vascular substrates impairs EPC adhesion, spreading, and migration; and alteration of the RGD integrin recognition motif plays a key role in these responses. The presence of AGE adducts on BM compromises repair by EPC with implications for vasodegeneration during diabetic microvasculopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Source: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS Volume: 131 Pages: 1257-1273 Part: Part 6 Published: 2001 Times Cited: 5 References: 23 Citation MapCitation Map beta Abstract: We show that the Banach space M of regular sigma-additive finite Borel complex-valued measures on a non-discrete locally compact Hausdorff topological Abelian group is the direct sum of two linear closed subspaces M-D and M-ND, where M-D is the set of measures mu is an element of M whose Fourier transform vanishes at infinity and M-ND is the set of measures mu is an element of M such that nu is not an element of MD for any nu is an element of M \ {0} absolutely continuous with respect to the variation \mu\. For any corresponding decomposition mu = mu(D) + mu(ND) (mu(D) is an element of M-D and mu(ND) is an element of M-ND) there exist a Borel set A = A(mu) such that mu(D) is the restriction of mu to A, therefore the measures mu(D) and mu(ND) are singular with respect to each other. The measures mu(D) and mu(ND) are real if mu is real and positive if mu is positive. In the case of singular continuous measures we have a refinement of Jordan's decomposition theorem. We provide series of examples of different behaviour of convolutions of measures from M-D and M-ND.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A locally convex space X is said to be integrally complete if each continuous mapping f: [0, 1] --> X is Riemann integrable. A criterion for integral completeness is established. Readily verifiable sufficient conditions of integral completeness are proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we prove several results on the stratifiability of locally convex spaces. In particular, we show that a free locally convex sum of an arbitrary set of stratifiable LCS is a stratifiable LCS, and that all locally convex F'-spaces whose bounded subsets are metrizable are stratifiable. Moreover, we prove that a strict inductive limit of metrizable LCS is stratifiable and establish the stratifiability of many important general and specific spaces used in functional analysis. We also construct some examples that clarify the relationship between the stratifiability and other properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let $\Gamma$ be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem $\dot x = Ax$, $x(0) = x_0$ with respect to functions $x: R\to E$. It is proved that if $E\in \Gamma$, then $E\times R^A$ is-an-element-of $\Gamma$ for an arbitrary set $A$. It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to $\omega$, does not belong to $\Gamma$.