856 resultados para Lithium fluoride
Resumo:
Resumo: A cárie dentária, um problema que tem atingido populações em grande parte do mundo, é a doença de maior prevalência da cavidade oral, gerando graves consequências económicas e sociais. Esta doença tem sido estudada ao longo do tempo em diferentes países com o emprego de diversos índices, geralmente para o estudo da sua prevalência, a avaliação de medidas preventivas e o adequado planeamento das acções e serviços de saúde oral. O objectivo deste Projecto foi determinar se a escovagem quando realizada na escola com pasta fluoretada, e supervisionada pelos professores, duas vezes por dia, seria ou não eficaz na diminuição das populações microbianas de Streptococcus mutans e Lactobacillus e na consequente diminuição da incidência de cárie dentária. Material e métodos: Foram seleccionadas todas as crianças (universo = 178), com idades compreendidas entre os 5, 6 e 7 anos, residentes no Concelho de Aljustrel e a frequentar o pré-escolar e o primeiro ciclo do ensino básico oficial. Foi realizada a escovagem bi-diária com pasta fluoretada a 500 ppm F-, na escola, segundo o método de Bass modificado, supervisionado pelos professores titulares de turma, que tiveram formação da técnica de escovagem utilizada. Durante os 3 anos de estudo foram realizadas 6 observações dentárias e recolhas salivares para contagem de Streptococcus mutans e Lactobacillus e avaliação da capacidade tampão da saliva. Resultados: O grupo de estudo no início da intervenção apresentava valores dos índices de cárie dentária mais elevados do que os do grupo de controlo (mais 0,109 no CPO-S, 0,0749 no CPO-D, 1,505 no cpo-s e 0,831 no cpo-d), porém sem diferenças de significância estatística. A análise estatística dos resultados não veio confirmar este pressuposto uma vez que o grupo de estudo apresentou um aumento percentual ligeiramente maior do índice CPO-D (12,5%) do que o grupo de controlo (11,6%). Para além deste aspecto, ao contrário do que seria de esperar, não foi possível detectar nenhuma diferença estatisticamente significativa em nenhum dos índices de cárie dentária (cpo-s, cpo-d, CPO-S e CPO-D) entre o grupo de estudo e grupo de controlo entre a 1ª e última observação.Ainda que os resultados do estudo aqui apresentado tenham ficado aquém do esperado, deveria ser efectuada a escovagem diária na escola, uma vez por dia, com pasta fluoretada a 1000 ppm F-, atendendo a que esta medida contribui para a promoção da saúde e prevenção da doença e é facilitadora da construção de estilos de vida saudáveis.-------ABSTRACT: Dental caries, a problem that has affected populations worldwide, is one of the most prevalent diseases of the oral cavity, causing severe economic and social consequences. This disease has been studied over time in different countries with the use of various indices, usually for the knowledge of its prevalence, evaluation of preventive measures and appropriate planning of actions and oral services. The aim of this study was to determine whether toothbrushing when performed in schools, with fluoride toothpaste, and supervised by teachers twice a day, was effective in reducing microbial populations of Streptococcus mutans and Lactobacillus with consequent reduction in the incidence of dental caries. Material and Methods: All children aged 5, 6, and 7 years, from Aljustrel County, attending official pre-school and first cycle of basic educatio were selected. Toothbrushing was performed twice a day with toothpaste with 500 ppm F-,in the school, according to the modified Bass method, supervised by professors in the class, who were trained in the brushing technique used. During the study period were performed 6 observations of the dental status, and were also collected saliva for the count of Streptococcus mutans and Lactobacillus, and assessment of buffering capacity of saliva. Results: The study group at the beginning of the intervention had higher values of dental caries than the control group (more than 0,109 in DMF-S, 0, 0749 in DMF, dmf-s 1,505 and 0,831 in dmf-t) although without statistical significance. The expected results were not confirmed, since the study group had a slightly higher percentage increase of the DMF-T (12,5%) than the control group (11,6%). Apart from that, contrary to what one would expect, we could not detect any statistical significant difference in any of the indices of dental caries (dmf-s, dmf-t and DMF-S, DMF-T) between the study and the control group in all study periods. Although the study results were not has expected, toothbrushing should be performed daily at school, once a day with fluoride toothpaste with 1000 ppm F-, since this measure contributes to health promotion and disease prevention and encourages healthy lifestyles.
Resumo:
This work reports the development of field-effect transistors (FETs), whose channel is based on zinc oxide (ZnO) nanoparticles (NPs). Using screen-printing as the primary deposition technique, different inks were developed, where the semiconducting ink is based on a ZnO NPs dispersion in ethyl cellulose (EC). These inks were used to print electrolyte-gated transistors (EGTs) in a staggered-top gate structure on glass substrates, using a lithium-based polymeric electrolyte. In another approach, FETs with a staggered-bottom gate structure on paper were developed using a sol-gel method to functionalize the paper’s surface with ZnO NPs, using zinc acetate dihydrate (ZnC4H6O4·2H2O) and sodium hydroxide (NaOH) as precursors. In this case, the paper itself was used as dielectric. The various layers of the two devices were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric and differential scanning calorimetric analyses (TG-DSC). Electrochemical impedance spectroscopy (EIS) was used in order to evaluate the electric double-layer (EDL) formation, in the case of the EGTs. The ZnO NPs EGTs present electrical modulation for annealing temperatures equal or superior to 300 ºC and in terms of electrical properties they showed On/Off ratios in the order of 103, saturation mobilities (μSat) of 1.49x10-1 cm2(Vs)-1 and transconductance (gm) of 10-5 S. On the other hand, the ZnO NPs FETs on paper exhibited On/Off ratios in the order of 102, μSat of 4.83x10- 3 cm2(Vs)-1and gm around 10-8 S.
Resumo:
The present work is divided in two parts: Part 1 is focused on the analysis and treatment of a 19th century portrait of Domingos Affonso, which belongs to the Ecomuseu Municipal do Seixal; and Part 2, which is entitled “The Microclimate Frame Project” is focused on the study of Artsorb® and on the planning of a microclimate frame for the painting. In Part 1, a study of the painting’s materials was performed using complementary analytical techniques and the painting’s condition was carefully evaluated. The painting exhibited signs of mould growth, and a more detailed investigation was made of this topic to understand if the fungal community was active and if it represented a real danger to the painting. A treatment was proposed, appropriate to the painting’s condition. A description of the treatment carried out, comprising the treatment options, is also present in this section. Within the study of the microclimate frame, in Part 2, the study of the potential corrosiveness of Artsorb® was a central subject. Artsorb® sheets are one of the most widely used materials for buffering relative humidity fluctuations in microclimate frames and its reported excellent performance is enhanced by its availability in lightweight sheets that can be easily placed inside microclimate frames. However, concerns have arisen regarding the presence of the corrosive salt lithium chloride in the composition of this buffer. Consequently, the present work also aimed to understand the potential risks of using Artsorb® and the possibility of avoiding exposure of lithium chloride to the artworks through the use of Tyvek®. Results from the preliminary tests seem to indicate that Artsorb® releases lithium chloride into air. This study also showed that a Tyvek® cover over Artsorb® reduces but does not eliminate evidence of chlorine contamination, and it significantly reduces the effectiveness of the buffering material. Considering that Artsorb® appears to be unsuitable due to the release of the corrosive salt, that Tyvek® was not efficient as a barrier for lithium chloride or as a permeable material to enable the proper functioning of Artsorb®, the buffering material proposed for the use in the microclimate frames is silica gel without indicator. Based on the choice of buffering material, as a result of this study, a microclimate frame is proposed.
Resumo:
Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu.g-1 and a maximum magnetoelectric coefficient of 9 mV.cm-1.Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.
Resumo:
The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials, however, their ME switching is often accompanied by significant hysteresis and coercivity that represents, for some applications, a severe weakness. To overcome this obstacle, this work focus on the development of a new type of ME polymer nanocomposites that exhibits tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE), matrix. No substantial differences were detected on the time-stable piezoelectric response of the composites (≈ -28 pC.N−1) with distinct ferrite fillers and for the same ferrite content of 10wt.%. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10wt.% ferrite content revealed that the ME induced voltage increases with increasing DC magnetic field until a maximum of 6.5 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.26 T, and 0.8 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. On the contrary, the ME response of the ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.
Resumo:
There is an increasing interest in thin and flexible energy storage devices to meet modern society needs for applications such as, radio frequency sensing, interactive packaging and other consumer products. Printed batteries comply these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and micro-batteries are also included in the area of printed batteries whenever fabricated by printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this review. The state-of-art takes into account both the research and industrial levels. In the academic one, the research progress of printed batteries is summarized divided in lithium-ion battery (Li-ion), zinc-manganese dioxide (Zn-MnO2), and other battery types with emphasis on the different materials for anode, cathode and separator as well as in the battery design. With respect to the industrial state-of-art, materials, device formulations and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed.
Resumo:
This paper presents a systematic study for the production of poly(vinylidene fluoride-hexafluoropropylene), P(VDF-HFP), porous films using solvent evaporation (SE) and non-solvent induced phase separation (NIPS) techniques. Parameters such as volume fraction of the copolymer solution, film thickness, time exposure to air, non-solvent and temperature of the coagulation bath were investigated on the morphology, crystallization and mechanical properties of the samples. Films with different porous morphologies including homogeneous pore sizes, macrovoids and spherulites were obtained depending on the processing conditions, which in turn affect the wettability and mechanical properties of the material. Knowing that the phase content of the films also depends on the processing conditions, this paper shows that P(VDF-HFP) films with tailored porous morphology, electroactive phase content, hydrophobicity, cristallinity and mechanical properties can be achieved for a specific application using the adequate SE and NIPS techniques conditions.
Polymer composites and blends for battery separators: State of the art, challenges and future trends
Resumo:
In lithium ion battery systems, the separator plays a key role with respect to device performance. Polymer composites and polymer blends have been frequently used as battery separators due to their suitable properties. This review presents the main issues, developments and characteristics of these polymer composites and blends for battery separator membrane applications. This review is divided into two sections regarding the composition of the materials: polymer composite materials, subdivided according to filler type, and polymer blend materials. For each category the electrolyte solutions, ionic conductivity and other relevant physical-chemical characteristics are described. This review shows the recent advances and opportunities in this area and identifies future trends and challenges.
Resumo:
Tri-layered and bi-layered magnetoelectric (ME) flexible composite structures of varying geometries and sizes consisting on magnetostrictive Vitrovac and piezoelectric poly(vinylidene fluoride) (PVDF) layers were fabricated by direct bonding. From the ME measurements it was determined that tri-layered composites structures (magnetostrictive-piezoelectric-magnetostrictive type), show a higher ME response (75 V.cm-1.Oe-1) than the bi-layer structure (66 V.cm 1.Oe-1). The ME voltage coefficient decreased with increasing longitudinal size aspect ratio between PVDF and Vitrovac layers (from 1.1 to 4.3), being observed a maximum ME voltage coefficient of 66 V.cm-1.Oe-1. It was also observed that the composite with the lowest transversal aspect ratio between PVDF and Vitrovac layers resulted in better ME performance than the structures with higher transversal size aspect ratios. It was further determined an intimate relation between the Vitrovac PVDF Area Area ratio and the ME response of the composites. When such ratio values approach 1, the ME response is the largest. Additionally the ME output value and magnetic field response was controlled by changing the number of Vitrovac layers, which allows the development of magnetic sensors and energy harvesting devices.
Resumo:
An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.
Resumo:
Preprint submitted to International Journal of Solids and Structures. ISSN 0020-7683
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
A novel approach for tissue engineering applications based on the use of magnetoelectric materials is presented. This work proves that magnetoelectric Terfenol-D/poly(vinylidene fluoride-co-trifluoroethylene) composites are able to provide mechanical and electrical stimuli to MC3T3-E1 pre-osteoblast cells and that those stimuli can be remotely triggered by an applied magnetic field. Cell proliferation is enhanced up to 25% when cells are cultured under mechanical (up to 110 ppm) and electrical stimulation (up to 0.115 mV), showing that magnetoelectric cell stimulation is a novel and suitable approach for tissue engineering allowing magnetic, mechanical and electrical stimuli.
Resumo:
This work describes the influence of a high annealing temperature of about 700C on the Si(substrate)/Si3N4/TiOx/Pt/LiCoO2 multilayer system for the fabrication of all-solid-state lithium ion thin film microbatteries. Such microbatteries typically utilize lithium cobalt oxide (LiCoO2) as cathode material with a platinum (Pt) current collector. Silicon nitride (Si3N4) is used to act as a barrier against Li diffusion into the substrate. For a good adherence between Si3N4 and Pt, commonly titanium (Ti) is used as intermediate layer. However, to achieve crystalline LiCoO2 the multilayer system has to be annealed at high temperature. This post-treatment initiates Ti diffusion into the Pt-collector and an oxidation to TiOx, leading to volume expansion and adhesion failures. To solve this adhesion problem, we introduce titanium oxide (TiOx) as an adhesion layer, avoiding the diffusion during the annealing process. LiCoO2, Pt and Si3N4 layers were deposited by magnetron sputtering and the TiOx layer by thermal oxidation of Ti layers deposited by e-beam technique. Asdeposited and annealed multilayer systems using various TiOx layer thicknesses were studied by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The results revealed that an annealing process at temperature of 700C leads to different interactions of Ti atoms between the layers, for various TiOx layer thicknesses (25–45 nm).