875 resultados para Literary Translation
Resumo:
Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. Most of the recently discovered regulatory ncRNAs acting on translation target the mRNA rather than the ribosome (e.g.: miRNAs, siRNAs, antisense RNAs). To address the question, whether ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes. Deep-sequencing analyses revealed thousands of putative rancRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and fine-tune the rate of protein biosynthesis (3,4). Many of the investigated rancRNAs appear to be processing products of larger functional RNAs, such as tRNAs (2,3), mRNAs (3), or snoRNAs (2). Post-transcriptional cleavage of RNA to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data disclose the ribosome as target for small regulatory RNAs. rancRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Ongoing work in our lab revealed first insight into rancRNA processing and mechanism of this emerging class of translation regulators.
Resumo:
The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.
Resumo:
The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [1].
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-associated non-protein-coding RNA (rancRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [3].
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the halophilic archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress-dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-associated non-coding RNA (rancRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [3].
Resumo:
The word 'palaver' is colloquially associated with useless verbiage and the nuisance of a tediously long, aimless and superfluous debate. At the same time, it insinuates an uncivilized culture of discourse beyond reason. Thus it appears to be of vaguely exotic origin but still firmly set in the European lexicon. Yet behind this contemporary meaning there lies a long history of linguistic and cultural transfers which is encased in a context of different usages of language and their intersections. By tracing the usage and semantics of 'palaver' in various encyclopaedias, glossaries and dictionaries of English, French, German, Portuguese and Spanish, the following article explores the rich history of this word. Moreover, it also regards the travelling semantics of the term 'palaver' as a process of cultural transfer that can be likened to the microcellular workings of a (retro)virus. Viral reproduction and evolution work through processes of transfer that enable the alteration of the host to adjust it to the replication and reproduction of the virus. In some cases, these processes also allow for the mutation or modification of the virus, making it suitable for transfer from one host to another. The virus is thus offered here as a vital model for cultural transfer: It not only encompasses the necessary adoption and adaption of contents or objects of cultural transfer in different contexts. It contributes to a conceptual understanding of the transferal residue that the transferred content is endowed with by its diversifying contexts. This model thereby surpasses an understanding of cultural transfer as literal translation or transmission: it conceptualizes cultural transfer as an agent of evolutionary processes, allowing for mutational effects of transfer as endowment.
Resumo:
The search for translation universals has been an important topic in translation studies over the past decades. In this paper, we focus on the notion of explicitation through a multifaceted study of causal connectives, integrating four different variables: the role of the source and the target languages, the influence of specific connectives and the role of the discourse relation they convey. Our results indicate that while source and target languages do not globally influence explicitation, specific connectives have a significant impact on this phenomenon. We also show that in English and French, the most frequently used connectives for explicitation share a similar semantic profile. Finally, we demonstrate that explicitation also varies across different discourse relations, even when they are conveyed by a single connective.
Annotating discourse connectives by looking at their translation: The translation-spotting technique
Resumo:
The various meanings of discourse connectives like while and however are difficult to identify and annotate, even for trained human annotators. This problem is all the more important that connectives are salient textual markers of cohesion and need to be correctly interpreted for many NLP applications. In this paper, we suggest an alternative route to reach a reliable annotation of connectives, by making use of the information provided by their translation in large parallel corpora. This method thus replaces the difficult explicit reasoning involved in traditional sense annotation by an empirical clustering of the senses emerging from the translations. We argue that this method has the advantage of providing more reliable reference data than traditional sense annotation. In addition, its simplicity allows for the rapid constitution of large annotated datasets.