962 resultados para Linear expansion coefficient
Resumo:
The indigenous cloud forests in the Taita Hills have suffered substantial degradation for several centuries due to agricultural expansion. Currently, only 1% of the original forested area remains preserved in this region. Furthermore, climate change imposes an imminent threat for local economy and environmental sustainability. In such circumstances, elaborating tools to conciliate socioeconomic growth and natural resources conservation is an enormous challenge. This dissertation tackles essential aspects for understanding the ongoing agricultural activities in the Taita Hills and their potential environmental consequences in the future. Initially, alternative methods were designed to improve our understanding of the ongoing agricultural activities. Namely, methods for agricultural survey planning and to estimate evapotranspiration were evaluated, taking into account a number of limitations regarding data and resources availability. Next, this dissertation evaluates how upcoming agricultural expansion, together with climate change, will affect the natural resources in the Taita Hills up to the year 2030. The driving forces of agricultural expansion in the region were identified as aiming to delineate future landscape scenarios and evaluate potential impacts from the soil and water conservation point of view. In order to investigate these issues and answer the research questions, this dissertation combined state of the art modelling tools with renowned statistical methods. The results indicate that, if current trends persist, agricultural areas will occupy roughly 60% of the study area by 2030. Although the simulated land use changes will certainly increase soil erosion figures, new croplands are likely to come up predominantly in the lowlands, which comprise areas with lower soil erosion potential. By 2030, rainfall erosivity is likely to increase during April and November due to climate change. Finally, this thesis addressed the potential impacts of agricultural expansion and climate changes on Irrigation Water Requirements (IWR), which is considered another major issue in the context of the relations between land use and climate. Although the simulations indicate that climate change will likely increase annual volumes of rainfall during the following decades, IWR will continue to increase due to agricultural expansion. By 2030, new cropland areas may cause an increase of approximately 40% in the annual volume of water necessary for irrigation.
Resumo:
In this paper, the steady laminar viscous hypersonic flow of an electrically conducting fluid in the region of the stagnation point of an insulating blunt body in the presence of a radial magnetic field is studied by similarity solution approach, taking into account the variation of the product of density and viscosity across the boundary layer. The two coupled non-linear ordinary differential equations are solved simultaneously using Runge-Kutta-Gill method. It has been found that the effect of the variation of the product of density and viscosity on skin friction coefficient and Nusselt number is appreciable. The skin friction coefficient increases but Nusselt number decreases as the magnetic field or the total enthalpy at the wall increases
Resumo:
The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.
Resumo:
Matthias, Miller and Remeika1 were the first to observe that triglycine sulphate becomes ferroelectric below 47°C. The dielectric properties and the specific heat of this crystal have been studied through the transition temperature by Hoshino, Mitsui, Jona and Pepinsky2. The observed variation of the dielectric properties as a function of temperature in this crystal shows that the transition is of second order. Hoshino et al. concluded that the anomaly is not of the λ-type, since their specific heat - temperature curve showed only a hump. It was decided to investigate the thermal expansion of this crystal as it might throw some light on the nature of the transition.
Resumo:
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.
Resumo:
In this paper we have discussed the boundary layer on a plate with suction. The problem is solved near the leading edge as well as far downstream. A linear suction law is assumed near the leading edge for simplicity, whereas no restriction is placed on the suction law in the region downstream. An explict expression for boundary layer thickness in terms of suction speed and distance from leading edge is derived. It is found that the thickness of the boundary layer depends on the derivative of the suction speed. The skin friction also has been evaluated. Though near the leading edge a linear law of suction is assumed, the method used in the paper can be easily generalised for any other power law, for example, we may use a power series expansion for the function defining the suction velocity.
Resumo:
The stress-optic coefficient (n3/2)(q11-q12) has been determined for a series of 18 optical glasses of different compositions in the wavelength range 5700-3200 Å. The coefficients are negative for all the glasses except for a high-lead-content glass of density 6·7 and refractive index 1·89. The numerical value of the coefficient decreases as one proceeds to the ultraviolet. This behaviour is just the opposite of what is observed in fused silica. By applying Mueller's theory, the strain polarizability constant and its dispersion have been evaluated.
Resumo:
Two optimal non-linear reinforcement schemes—the Reward-Inaction and the Penalty-Inaction—for the two-state automaton functioning in a stationary random environment are considered. Very simple conditions of symmetry of the non-linear function figuring in the reinforcement scheme are shown to be necessary and sufficient for optimality. General expressions for the variance and rate of learning are derived. These schemes are compared with the already existing optimal linear schemes in the light of average variance and average rate of learning.
Resumo:
Equivalence of certain classes of second-order non-linear distributed parameter systems and corresponding linear third-order systems is established through a differential transformation technique. As linear systems are amenable to analysis through existing techniques, this study is expected to offer a method of tackling certain classes of non-linear problems which may otherwise prove to be formidable in nature.
Resumo:
A design methodology for wave-absorbing active material system is reported. The design enforces equivalence between an assumed material model having wave-absorbing behavior and a set of target feedback controllers for an array of microelectro-mechanical transducers which are integral part of the active material system. The proposed methodology is applicable to problems involving the control of acoustic waves in passive-active material system with complex constitutive behavior at different length-scales. A stress relaxation type one-dimensional constitutive model involving viscous damping mechanism is considered, which shows asymmetric wave dispersion characteristics about the half-line. The acoustic power flow and asymptotic stability of such material system are studied. A single sensor non-collocated linear feedback control system in a one-dimensional finite waveguide, which is a representative volume element in an active material system, is considered. Equivalence between the exact dynamic equilibrium of these two systems is imposed. It results in the solution space of the design variables, namely the equivalent damping coefficient, the wavelength(s) to be controlled and the location of the sensor. The characteristics of the controller transfer functions and their pole-placement problem are studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A method is developed by which the input leading to the highest possible response in an interval of time can be determined for a class of non-linear systems. The input, if deterministic, is constrained to have a known finite energy (or norm) in the interval under consideration. In the case of random inputs, the energy is constrained to have a known probability distribution function. The approach has applications when a system has to be put to maximum advantage by getting the largest possible output or when a system has to be designed to the highest maximum response with only the input energy or the energy distribution known. The method is also useful in arriving at a bound on the highest peak distribution of the response, when the excitation is a known random process.As an illustration the Duffing oscillator has been analysed and some numerical results have also been presented.