999 resultados para Ligand fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases1. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise2, 3. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9–55 G (refs 4,5,6,7). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 ± 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To limit toxicity to normal tissues adjacent to the target tumour volume, radiotherapy is delivered using fractionated regimes whereby the total prescribed dose is given as a series of sequential smaller doses separated by specific time intervals. The impact of fractionation on out-of-field survival and DNA damage responses was determined in AGO-1522 primary human fibroblasts and MCF-7 breast tumour cells using uniform and modulated exposures delivered using a 225 kVp x-ray source. Responses to fractionated schedules (two equal fractions delivered with time intervals from 4 h to 48 h) were compared to those following acute exposures. Cell survival and DNA damage repair measurements indicate that cellular responses to fractionated non-uniform exposures differ from those seen in uniform exposures for the investigated cell lines. Specifically, there is a consistent lack of repair observed in the out-of-field populations during intervals between fractions, confirming the importance of cell signalling to out-of-field responses in a fractionated radiation schedule, and this needs to be confirmed for a wider range of cell lines and conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 1019W cm-2) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10-20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8-10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that for collisions of electrons with a high-intensity laser, discrete photon emissions introduce a transverse beam spread that is distinct from that due to classical (or beam shape) effects. Via numerical simulations, we show that this quantum induced transverse momentum gain of the electron is manifest in collisions with a realistic laser pulse of intensity within reach of current technology, and we propose it as a measurable signature of strong-field quantum electrodynamics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the PTW 1000SRS array with Octavius 4D phantom was characterised for FF and FFF beams. MU linearity, field size, dose rate, dose per pulse (DPP) response and dynamic conformal arc treatment accuracy of the 1000SRS array were assessed for 6MV, 6FFF and 10FFF beams using a Varian TrueBeam STx linac. The measurements were compared with a pinpoint IC, microdiamond IC and EBT3 Gafchromic film. Measured dose profiles and FWHMs were compared with film measurements. Verification of FFF volumetric modulated arc therapy (VMAT) clinical plans were assessed using gamma analysis with 3%/3 mm and 2%/2 mm tolerances (10% threshold). To assess the effect of cross calibration dose rate, clinical plans with different dose rates were delivered and analysed. Output factors agreed with film measurements to within 4.5% for fields between 0.5 and 1 cm and within 2.7% for field sizes between 1.5 and 10 cm and were highly correlated with the microdiamond IC detector. Field sizes measured with the 1000SRS array were within 0.5 mm of film measurements. A drop in response of up to 1.8%, 2.4% and 5.2% for 6MV, 6FFF and 10FFF beams respectively was observed with increasing nominal dose rate. With an increase in DPP, a drop of up to 1.7%, 2.4% and 4.2% was observed in 6MV, 6FFF and 10FFF respectively. The differences in dose following dynamic conformal arc deliveries were less than 1% (all energies) from calculated. Delivered VMAT plans showed an average pass percentage of 99.5(±0.8)% and 98.4(±3.4)% with 2%/2 mm criteria for 6FFF and 10FFF respectively. A drop to 97.7(±2.2)% and 88.4(±9.6)% were observed for 6FFF and 10FFF respectively when plans were delivered at the minimum dose rate and calibrated at the maximum dose rate. Calibration using a beam with the average dose rate of the plan may be an efficient method to overcome the dose rate effects observed by the 1000SRS array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave energy converters, by their nature, extract large amounts of energy
from incident waves. If the industry is to progress such that wave energy
becomes a significant provider of power in the future, large wave farms will
be required. Presently, consenting for these sites is a long and problematic
process, mainly due to a lack of knowledge of the potential environmental
impacts. Accurate numerical modelling of the effect of wave energy extraction
on the wave field and subsequent evaluation of changes to coastal
processes is therefore required. Modelling the wave field impact is also
necessary to allow optimum wave farm configurations to be determined.
This thesis addresses the need for more accurate representation of wave
energy converters in numerical models so that the effect on the wave field,
and subsequently the coastal processes, may be evaluated. Using a hybrid
of physical and numerical modelling (MIKE21 BW and SW models) the
effect of energy extraction and operation of a WEC array on the local wave
climate has been determined.
The main outcomes of the thesis are: an improved wave basin facility, in
terms of wave climate homogeneity, reducing the standard deviation of wave
amplitude by up to 50%; experimental measurement of the wave field around
WEC arrays, showing that radiated waves account for a significant proportion
of the wave disturbance; a new representation method of WECs for use
with standard numerical modelling tools, validated against experimental
results.
The methodology and procedures developed here allow subsequent evaluation
of changes to coastal processes and sediment transport due to WEC
arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lability criterion is developed for dynamic metal binding by colloidal ligands with convective diffusion as the dominant mode of mass transport. Scanned stripping chronopotentiometric measurements of Pb(II) and Cd(II) binding by carboxylated latex core-shell particles were in good agreement with the predicted values. The dynamic features of metal ion binding by these particles illustrate that the conventional approach of assuming a smeared-out homogeneous ligand distribution overestimates the lability of a colloidal ligand system. Due to the nature of the spatial distribution of the binding sites, the change in lability of a metal species with changing ligand concentration depends on whether the ligand concentration is varied via manipulation of the pH (degree of protonation) or via the particle concentration. In the former case the local ligand density varies, whereas in the latter case it is constant. This feature provides a useful diagnostic tool for the presence of geometrically constrained binding sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the dynamic nature of metal speciation in colloidal dispersions using a recently proposed theory [J.P. Pinheiro, M. Minor, H.P. Van Leeuwen, Langmuir, 21 (2005) 8635] for complexing ligands that are situated on the surface of the particles. The new approach effectively modifies the finite rates of association/dissociation of the colloidal metal complexes, thus invoking consideration of the two basic dynamic criteria: the association/dissociation kinetics of the volume complexation reaction (the ‘‘dynamic’’ criterion), and the interfacial flux of free metal to a macroscopic surface due to dissociation of complex species (the ‘‘lability’’ criterion). We demonstrate that the conventional approach for homogeneous systems that assume a smeared-out ligand distribution, overestimates both the dynamics and the lability of metal complexes when applied to colloidal ligands. It is also shown that the increase of lability with increasing particle radius, as expected for a homogeneous solution, is moderated for spherical microelectrodes and practically eliminated for planar electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole animal studies have indicated that Ca2+ uptake by the gastrointestinal tract is regulated by the action of parathyroid hormone-related peptide (PTHrP) in teleost fish. We have characterised PTH receptors (PTHR) in piscine enterocytes and established, by using aminoterminal PTHrP peptides, the amino acid residues important for receptor activation and for stabilising the ligand/receptor complex. Ligand binding of 125I-(1–35tyr) PTHrP to the membrane fraction of isolated sea bream enterocytes revealed the existence of a single saturable high-affinity receptor (KD=2.59 nM; Bmax=71 fmol/mg protein). Reverse transcription/polymerase chain reaction with specific primers for sea bream PTH1R and PTH3R confirmed the mRNA expression of only the later receptor. Fugu (1–34) PTHrP increased cAMP levels in enterocytes but had no effect on total inositol phosphate accumulation. The aminoterminal peptides (2–34)PTHrP, (3–34)PTHrP and (7–34) PTHrP bound efficiently to the receptor but were severely defective in stimulating cAMP in enterocyte cells indicating that the first six residues of piscine (1–34)PTHrP, although not important for receptor binding, are essential for activation of the adenylate cyclase/phosphokinase A (AC-PKA)-receptor-coupled intracellular signalling pathway. Therefore, PTHrP in teleosts acts on the gastrointestinal tract through PTH3R and the AC-PKA intracellular signalling pathway and might regulate Ca2+ uptake at this site. Ligand-receptor binding and activity throughout the vertebrates appears to be allocated to the same amino acid residues of the amino-terminal domain of the PTHrP molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochromes P450 constitute a super-family of enzymes involved in the metabolism of Xenobiotics, where human cytochrome P450 3A4 is the most abundant of all P450s, accounting for about 50% of all human liver cytochromes. This membrane anchored protein is responsible for the metabolization of a wide array of environmental drugs and intoxicants, mainly due to its haem domain properties, and active site cavity volume. These properties make this protein an excellent subject for biosensor application, although CYO3A4 enzyme is also famous for its instability. Enzyme inactivation at room temperature is a normal conversion process that this enzyme undergoes, that may hamper any biosensing approach.