970 resultados para Liesegang rings
Resumo:
A new class of soluble six-membered ring polynaphthalimides (PNIs) was synthesized from asymmetrical fluorinated naphthalenesubstituted monomers. All the resulting PNIs were easily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO). and chloroform. They also showed good thermal stability with glass transition temperature of 340-386 degrees C, 10% weight loss temperature in excess of 529 degrees C. Polyimide 3c could be solution-cast into tough and flexible film. The film had a tensile strength, elongation at break, and Young's modulus of about 117.6 Wa, 23.6%, and 1.77 GPa, respectively. The gas permeation property of the film of 3c was investigated with oxygen permeability coefficient (PO2 = 3.99) and permeability selectivity coefficient of oxygen to nitrogen (P-O2/P-N2 = 5.27). Therefore, these materials are expected to be a good alternative to PIs based on five-membered rings with applications in gas separation membranes.
Resumo:
One mu-dichloro bridged diiridium complex and three mononuclear iridium(III) complexes based on the 1,3,4-oxadiazole derivatives as cyclometalated ligands and acetylacetonate (acac) or dithiolates O,O'-diethyldithiophosphate (Et(2)dtp) or N,N'-diethyldithiocarbamate (Et(2)dtc) as ancillary ligands have been synthesized and systematically studied by X-ray diffraction analysis. The results reveal that three mononuclear complexes all adopt distorted octahedral coordination geometry around the iridium center by two chelating ligands with cis-C-C and trans-N-N dispositions, which have the same coordination mode as the diiridium dimer. The dinuclear complex crystallizes in the monoclinic system and space group C2/c, whereas three mononuclear iridium complexes are all triclinic system and space group P(1) over bar. In the stacking structure of the dimer, one-dimensional tape-like chains along the b-axis are formed by hydrogen bondings, which are strengthened by pi stacking interactions between phenyl rings of 1,3,4-oxadiazole ligands. Then these chains assemble a three-dimensional alternating peak and valley fused wave-shape structure. In each stacking structure of three mononuclear complexes, two molecules form a dimer by the C-H center dot center dot center dot O hydrogen bondings, and these dimers are connected by pi stacking interactions along the b-axis, constructing a zigzag chain.
Resumo:
Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures, were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au@Ag) core-shell nanostructures could be achieved by chemical metal deposition method.
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(1H)-ones is developed via the Vilsmeier-Haack reaction of readily available 1-acetyl,1-carbamoyl cyclopropanes, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(IH)-ones was developed via Vilsmeier-Haack reactions of readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
The strong polar group, carboxylic acid, has triumphantly been introduced into ethylene and allylbenzene copolymers without obvious degradation or crosslinking via Friedel-Crafts (F-C) acylation reaction with glutaric anhydride (GA), succinic anhydride (SA) and phthalic anhydride (PA) in the presence of anhydrous aluminum chloride in carbon disulfide. Some important reaction parameters were examined in order to optimize the acylation process. In the optimum reaction conditions, almost all of the phenyls can be acylated with any anhydride. The microstructure of acylated copolymer was characterized by Fr-IR, H-1 NMR and H-1-H-1 COSY. All the peaks of acylated copolymers can be accurately attributed, which indicates that all the acylation reactions occur only at the para-positions of the substituent of the aromatic rings. The thermal behavior was studied by differential scanning calorimetry (DSC), showing that the melting temperatures (T(m)s) of acylated copolymers with GA firstly decrease slowly and then increase significantly with the increase of the amount of carboxyl acid groups.
Resumo:
The ring-banded spherulites in liquid crystalline poly(aryl ether ketone) (LC-PAEK) and poly(aryl ether ether ketone) (PEEK) blends with a higher content (>50%) of LC-PAEK are investigated by polarizing light microscopy (PLM) and atomic force microscopy (AFM) techniques. The results indicate that the light core and rings of the ring-banded spherulites under PLM are mainly composed of an LC-PAEK phase, while the dark rings consist of coexisting phases of PEEK and a small amount of LC-PAEK. The formation of the ring-banded spherulites is attributable to structural discontinuity caused by a rhythmic radial growth.
Resumo:
Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI(2)(THF)(2) (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)(2)Ln(II)(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl(3) (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)(2)Ln(III)Cl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the side-arms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for F-caprolactone (CL).
Resumo:
Reaction of two equivalents of tetrahydrofurfuryl indenyl lithium with anhydrous lanthanide trichlorides in THF afforded bis(tetrahydrofurfurylindenyl) lanthanide chlorides (C4H7OCH2C9H6)(2)LnCl, Ln=La(l), Pr(2), Lu(3). Complexes I and 3 are characterized by single-crystal analysis. The results of crystal structural determination reveal that they are 9-coordinate monomeric intramolecular complexes with a trans arrangement of both the sidearms and indenyl rings in the solid state. The effects of rare earth ionic radii on the structures Of (C4H7OCH2C9H6)(2)LnCl are discussed.
Resumo:
The reactions of freshly prepared Cu(OH)(2).xH(2)O and Cu(OH)(2-2y)(CO3)(y).zH(2)O precipitates with imidazole and adipic acid in CH3OH/H2O at pH = 5.4 yielded CU(C3N2H4)(2)(HL)(2) 1 and CU(C3N2H4)(2)L 2, respectively. Complex 1 consists of ribbon-like polymeric chains (1)(infinity)[CU(C3N2H4)(2)(HL)(4/2)], in which the octahedrally coordinated Cu atoms are doubly bridged by bis-monodentate hydrogen adipato ligands. The interchain N-H...O hydrogen bonding interactions are responsible for supramolecular assembly of the polymeric chains into open 3D frameworks and two-fold interpenetration of the resulting open frameworks completes the crystal structure of 1. Within complex 2, the Cu atoms are penta-coordinated to form CuN2O3 square pyramids and condensed into CU2N4O4 dimers, which are doubly bridged by twisted bis-monodentate adipato ligands into polymeric chains (1)(infinity)([CU(C3N2H4)(2)](2)L-4/2) with 4- and 18-membered rings progressing alternatively. The polymeric chains are assembled due to interchain N-H...O hydrogen bonding interactions. The thermal and magnetic behaviors of 1 and 2 is discussed.
Resumo:
Two new Cull coordination polymers, namely [Cu-2(BDC)(2)(L)(4)(H2O)(2)]center dot 14H(2)O (1) and [Cu-1.5(BTC)(L)(1.5)(H2O)(0.5)]center dot 2H(2)O (2), where L = 1,1'-(1,4-butanediyl)bis(imidazole), BDC = 1,4-benzene dicarboxylate, and BTC = 1,3,5-benzenetricarboxylate, have been synthesized at room temperature. Complex 1 exhibits an unusual, square-planar, four-connected 2D (2)(6)4 net, which has been predicated by Wells. Interestingly, three types of water clusters, namely (H2O)(6), (H2O)(8), and (H2O)(10), are observed in the hydrogen-bonded layers constructed by the BDC ligands and water molecules. The BTC anion in compound 2 is coordinated to the Cu" cation as tetradentate ligand to form a (6(6))(2)(4(2)6(4)8(4))(2)(6(4)810) net containing three kinds of nonequivalent points, Thermogravimetric analyses (TGA) and IR spectra for 1 and 2 are also discussed in detail.
Resumo:
2-(4-Aminophenyl)-5-aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo- and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4-phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97-4.38 dL/g (c = 0.5 g/dL, in DMAc, 30 degrees C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307-434 degrees C and the 10% weight loss temperature is in the range of 556-609 degrees C under air. The polyimide films possess strength at break in the range of 185-271 MPa, elongations at break in the range of 6.8-51%, and tensile modulus in the range of 3.5-6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance.
Resumo:
The synthetic and functional versatility of dendrimers and their well-defined shapes make them attractive molecules for surface modification. We synthesized six structurally very similar surface-bound dendrons and used them as building blocks for the preparation of self-assembled monolayers (SAMs) on a gold surface. We studied the effects of the surface-bound dendron's main structure, peripheral substituents, and the coadsorption process on its self-assembling behavior. Using scanning tunneling microscopy (STM), we observed nanostripes for SAMs of the surface-bound dendron consisting of symmetrical benzene rings. When we changed the symmetrical dendron's structure slightly, by increasing or decreasing the numbers of benzene rings at one wedge, we found no ordered structures were formed by the asymmetrical dendrons. We also introduced two kinds of substituents, heptane chains and oligo(ethylene oxide) chains, to the symmetrical dendron's periphery. Heptane chains appear to enhance the interaction between symmetrical backbones, leading to the formation of stripes, while oligo(ethylene oxide) chains appear to weaken the interaction between symmetrical backbones, resulting in a homogeneous structure. Dendrons with both heptane and oligo(ethylene oxide) chains exhibit nanophase separation in a confined state, leading to the formation of a honeycomb structure.