991 resultados para Leg
Resumo:
Atterberg limits have been determined for 32 unconsolidated sediment samples, ranging in composition from silty clay to sandy silt and recovered from four sites drilled at the mouth of the Gulf of California during DSDP Leg 65. The liquid limit of the samples ranged from 41.5% to 157.5%, and the plastic limit from 32.8% to 65.1%. The plasticity index ranged from 5.9% to 102.0%. In some samples, the water content was less than the liquid limit. The liquidity index averaged 76% while the flow and toughness indices averaged 35% and 2.18%, respectively. On the basis of these limits, the sediments analyzed can be classified as inorganic clays of high plasticity, organic clays of moderate to high plasticity, and diatomaceous sands, silts, and silty clays of low plasticity.
Resumo:
Ocean Drilling Program Leg 115 was designed to study Neogene sedimentation history in the western Indian Ocean Basin as well as the Cenozoic evolution of the Reunion hotspot. We describe the paleomagnetic analysis of the sediments recovered on this leg, focusing on the sites that provided the most readily interpretable data: Sites 706, 709, 710, and 711. Sediments from Site 706 show no reversals but appear to give a reliable reversed polarity primary direction, judged on the basis of the demagnetization behavior of individual samples as well as from the results of a fold test formulated by comparing the two holes drilled at this site. Magnetic polarity stratigraphy in sediments from Site 709 can be deduced in two limited sections of Pliocene-Pleistocene and Oligocene-Miocene age. Sediments recovered at Site 710 (and, to a lesser extent, Site 711) render a relatively continuous magnetic polarity stratigraphy that spans most of the Neogene and adds significantly to the body of data available to address problems in Miocene geochronology. In addition to these magnetostratigraphic results, the paleomagnetism of these sediments can be used to determine paleolatitude. Using the most reliable inclination measurements from Sites 706, 710, and 711, we compared paleomagnetic estimates of paleolatitude with estimates derived from a hotspot-based absolute plate motion model. Our data, which covers the interval since 33 Ma, shows that paleolatitudes calculated with the geocentric axial dipole assumption are in general accord with the hotspot predictions. However, a correction for the long-term nondipole field brings the paleomagnetic results into even better agreement with plate motions that are based on the fixity of African hotspots.
Resumo:
Secondary minerals in basalts from Holes 495 and 500 include smectite and chlorite, both of which have partially replaced the basalt groundmass. In addition to these two minerals, amphibole, laumontite, albite, and a corrensitelike mineral are present in Holes 499B and 499C. Smectite, chlorite, talc, calcite, phillipsite, mica, and mixed-layer chlorite-montmorillonite also fill veins in the basalts of Hole 495. The secondary mineral assemblages from Site 499 are characteristic of the initial stage of greenschist facies metamorphism.
Resumo:
To date, work on the Great Bahama Bank's western, leeward margin has centred chiefly on seismic-scale expressions of carbonate sequences and systems tracts. However, periplatform, slope sediments also exhibit very well developed cyclicity on scales of decimetres to several metres. It is these small-scale, high-frequency cycles within the larger-scale facies successions of the Quaternary which form the main topic of this paper. Previous studies have shown that the small-scale cycles correlate to the orbitally forced, high-frequency sea-level changes. Therefore these cycles should indicate how sea level has affected the slope development and thus platform-margin evolution during this period. Through detailed, high-resolution sequence stratigraphy of the Great Bahama Bank's leeward margin, obtained via delta18O isotope and mineralogical (XRD) analyses, confined by U/Th dating and nannofossil bioevents, a greater understanding of the bedding geometries within the Pleistocene-Holocene seismic sequences and clues as to the nature of the slope development has been achieved. The high-resolution seismic profiles indicate that since the Plio-Pleistocene change in geometry, in which the Great Bahama Bank developed into a rimmed platform, continued steepening and subsequent progradation of the leeward margin has typified slope development during the Quaternary, which is described as an accretionary slope. However, on the basis of our observations we conclude that only the early to lower middle Pleistocene section (isotope stages 45-20) and the Holocene (isotope stage 1) of the leeward margin is accretionary. This indicates that a degree of erosion and/or by-passing has occurred on the leeward margin since the lower middle Pleistocene (isotope stage 19). During the first part of this period (isotope stages 19-12) erosion and/or by-passing occurred in the middle to lower slope regions and toe-of-slope. By the end of the upper middle to late Pleistocene phase (isotope stages 11-2) erosion also occurred on the upper slope. This erosion by currents at the toe-of-slope and oversteepening of the upper and middle slopes have led to back-cutting upslope and resulted in the progressive retreat of the toe-of-slope towards the platform to the east. However, the rise in sea level since the Last Glacial Maximum to its present-day level has allowed high productivity on the platform top during the Holocene and the deposition of a thick sediment wedge on the slope and sedimentation across the entire leeward flanks. This has led to the redevelopment of an accretionary slope and continued westward progradation of the Great Bahama Bank's western, leeward margin.
Resumo:
During drilling in the Gulf of California, diagenetic carbonate rocks were recovered at 7 out of 8 sites. These are primarily dolomites which record 13C isotopic evidence of the incorporation of carbon derived from the decomposition of organic matter. In Hole 479, drilled to a sub-bottom depth of 440 meters on the Guaymas Slope, under a fertile upwelling belt, we recognized an excellent example of deep sea dolomitization in progress. This Quaternary section of organic-carbon- rich, low-carbonate, hemipelagic diatomaceous oozes contains numerous fine-grained, decimeter-thin, episodic beds of dolomite, which show sedimentologic, geochemical, and isotopic evidence of accretion by precipitation below 40 meters sub-bottom in zones of high alkalinity and low sulfate. The beds preserve original sedimentary structures. Carbon-13 varies from +3 to +14 per mil, indicating biogenic CO2 reservoirs related to active methanogenesis. In single beds, 18O values range outwardly from +5 to -7 per mil, reflecting increasing temperature with progressive accretion of dolomite with depth; the values parallel progressive trends in lithification, texture, mineralogy, and fossil preservation. We estimate slow accretion rates on the order of 0.1-0.7 mm/10**3 yr. with burial. Dolomitization does not proceed merely at the expense of nearby nannofossils. Ca and Mg ions must be derived from interstitial waters. The episodic appearance of beds in the sequence seems partly a reflection of latent climate signals. This process of deep sea dolomitization carries implications for hydrocarbon migration, as well as an interpretation of the presence of dolomite in other modern and ancient pelagic to hemipelagic sediment sequences.
Resumo:
Chemical analyses were performed on major, minor, and rare-earth elements of pelagic and hemipelagic sediments of the forearc, arc, and backarc sites of the Izu-Bonin Arc, Ocean Drilling Program Leg 126. Analyses of the hemipelagic and pelagic sediments of this area indicate that the chemical composition of this arc is highly affected by the chemical composition of rocks of this arc as a source of sediments. The Oligocene sediments, which are characterized by high MgO contents, reflect the chemical composition of the Paleogene volcanic rocks of the immature arc. Moreover, the late Miocene to Quaternary sediments with low MgO contents are attributed to the composition of the present arc. We also suggest that the sedimentation rates and topography of the sedimentary basin affect the MnO and SiO2 contents of pelagic and hemipelagic sediments.
Resumo:
Deep Sea Drilling Project Leg 74 drilled basement on the Walvis Ridge at Sites 525, 527, and 528. These sites are located on the crest and flanks of the segment of the Ridge about 68 to 70 m.y. old in the central province of the Ridge. Each site has a number of distinct subaqueous flows separated by sediment layers. Although variation in geochemistry among units and sites is related in part to alteration or crystal fractionation, some is caused by small-scale compositional variation in the mantle source of the basalts. Leg 74 basalts are similar to other basalts recovered from the Walvis Ridge and the Rio Grande Rise. They show distinct compositional differences to mid-ocean ridge basalts in general, to those recovered from the South Atlantic at this latitude, and to basalts presently erupting in Tristan da Cunha. The composition of the Walvis Ridge basalts does not suggest simple mixtures of present-day MORB and Tristan da Cunha melts. If the Walvis Ridge represents the trace of the Tristan da Cunha hot spot as the plates separated, then the composition of the mantle source has differed at different times in the past, which suggests mantle heterogeneity.
Resumo:
I have evaluated shipboard data and preliminary interpretations related to organic geochemistry in light of additional shore-based analyses. Data on interstitial gas, the C/N ratio, and fluorescence indicate that organic matter was altered by sills and that these were all single intrusions except the upper sill complex at Site 481, which was a multiple emplacement. Site 477 had the highest in situ temperature, estimated from interstitial gas composition to be 225°C.
Resumo:
Calcareous nannofossils, pollen, and spores were examined on samples from Ocean Drilling Program Leg 178 Site 1095 on the continental rise and Sites 1097, 1100, and 1103 on the outer continental shelf of the western Antarctic Peninsula. Stratigraphically useful specimens of calcareous nannofossils occur in Site 1095 sediments assigned to Zones CN15, CN13b, and CN11. Calcareous nannofossils are rare but occur throughout the sedimentary sequences from seismic Units S1 to S3 on the continental shelf. Most of the calcareous nannofossils in Units S1 and S2 are composed of Cretaceous specimens that have been recycled by glacial processes. The occurrence of Dictyococcites in samples within Unit S3 upper Miocene sediments without any reworked specimens suggests those sediments are deposited in an open-ocean environment. These results are consistent with those from foraminifer and radiolarian studies. Pollen and spores including Nothofagidites, the genus for fossil pollen referred to as Nothofagus, are also observed in Unit S3 sediments. The sparse occurrence of pollen and spores, however, makes it difficult to assess the nature of the Antarctic terrestrial vegetation.
Resumo:
During Ocean Drilling Program Leg 125, a thick sequence of middle Eocene to Pleistocene pelagic sediments, volcanogenic sediments, and predominantly extrusive volcanic rocks was recovered. Calcareous nannofossils were examined from 15 holes at nine sites, but Eocene to Miocene calcareous nannofossils were found only from Holes 782A, 784A, 786A, and 786B. In portions of Holes 786A and 786B, datable nannofossil oozes were found intercalated among volcanic flows. The nannofossil biostratigraphy of these holes indicates the presence of three well-defined hiatuses: within the lower Oligocene, between the upper Oligocene and middle Miocene, and between the middle and upper Miocene. An attempt was made to correlate the magnetochronological data with the first or last occurrences of the following species: Sphenolithus distentus, Reticulofenestra bisecta, Reticulofenestra reticulata, and Cyclicargolithus floridanus abisectus n. comb. The results indicate that the FO of Sphenolithus distentus can extend down to Zone CP16 (34.7 Ma), the LO of Reticulofenestra bisecta best defines the boundary between CP19a and CP19b (23.5 Ma), and the LO of Cyclicargolithus f. abisectus n. comb, can extend up to Subzone CN5a (12.5 Ma). No latest Oligocene Cyclicargolithus f. abisectus n. comb, acme was observed. Cyclicargolithus abisectus is considered a subspecies or variant of Cyclicargolithus floridanus because their LOs coincide. As a consequence of these observations, we have modified the definitions of Bukry's Subzones CP14a, CP14b, and CNla. Analyses of sediment-accumulation rates indicate that the rates increased gradually from the Eocene to Miocene. This is especially evident since the late Miocene in Hole 782A. In different parts of the Izu-Bonin forearc basin, however, the rate is not everywhere the same and appears to vary according to the import of volcanogenic materials.
Resumo:
The barite and CaCO3 content (in weight percent) of marine sediments can be used to determine spatial and temporal changes in export production (organic and carbonate carbon flux) and/or CaCO3 preservation (inorganic carbon burial). Here we report barite and CaCO3 content in Eocene/Oligocene (E/O) boundary sediments from locations drilled on Shatsky Rise during Ocean Drilling Program Leg 198. Records of these indexes may be used along with other data to determine how the major E/O boundary climatic transition (initiation of Antarctic glaciation and resultant ocean-climate system changes) affected marine export production/preservation at Shatsky Rise. Such data are necessary to elucidate the timing and phasing of changes in the carbon cycle relative to fluctuations in oceanographic conditions across this climatically important interval.
Resumo:
The basalts recovered at Holes 651A and 655B appear to carry a single component remanent magnetization, which is generally of reversed polarity. These magnetizations are consistent with eruption during the Matuyama (651A) and Gilbert (655B) polarity epochs. The blocking temperature spectra and the Js/T curves indicate that titanomaghemite is the principal remanence carrier. The lower mean destructive field (MDF) and higher susceptibility at 651A probably indicates a lower mean oxidation state at this hole relative to 655B, which may simply reflect the age difference between the two basalt sequences. At both holes, a decreasing downcore trend both in natural remanent magnetization (NRM) and susceptibility probably indicates that maghemitization (from primary titanomagnetite) increases downcore. An interval of high coercivity at hole 655B (119.80-151.45 mbsf) appears to define a magnetically distinct unit within the basalt sequence.