924 resultados para Learning-Content-System
Resumo:
The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.
Resumo:
This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.
Resumo:
This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.
Resumo:
This paper describes a general, trainable architecture for object detection that has previously been applied to face and peoplesdetection with a new application to car detection in static images. Our technique is a learning based approach that uses a set of labeled training data from which an implicit model of an object class -- here, cars -- is learned. Instead of pixel representations that may be noisy and therefore not provide a compact representation for learning, our training images are transformed from pixel space to that of Haar wavelets that respond to local, oriented, multiscale intensity differences. These feature vectors are then used to train a support vector machine classifier. The detection of cars in images is an important step in applications such as traffic monitoring, driver assistance systems, and surveillance, among others. We show several examples of car detection on out-of-sample images and show an ROC curve that highlights the performance of our system.
Resumo:
We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.
Resumo:
We describe a system that learns from examples to recognize people in images taken indoors. Images of people are represented by color-based and shape-based features. Recognition is carried out through combinations of Support Vector Machine classifiers (SVMs). Different types of multiclass strategies based on SVMs are explored and compared to k-Nearest Neighbors classifiers (kNNs). The system works in real time and shows high performance rates for people recognition throughout one day.
Resumo:
We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly supplying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a reinforcement learning algorithm that learns profitable market-making strategies when run on this model. The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning results for two separate real stocks.
Resumo:
Recently, researchers have introduced the notion of super-peers to improve signaling efficiency as well as lookup performance of peer-to-peer (P2P) systems. In a separate development, recent works on applications of mobile ad hoc networks (MANET) have seen several proposals on utilizing mobile fleets such as city buses to deploy a mobile backbone infrastructure for communication and Internet access in a metropolitan environment. This paper further explores the possibility of deploying P2P applications such as content sharing and distributed computing, over this mobile backbone infrastructure. Specifically, we study how city buses may be deployed as a mobile system of super-peers. We discuss the main motivations behind our proposal, and outline in detail the design of a super-peer based structured P2P system using a fleet of city buses.
Resumo:
La asignatura troncal “Evaluación Psicológica” de los estudios de Psicología y del estudio de grado “Desarrollo humano en la sociedad de la información” de la Universidad de Girona consta de 12 créditos según la Ley Orgánica de Universidades. Hasta el año académico 2004-05 el trabajo no presencial del alumno consistía en la realización de una evaluación psicológica que se entregaba por escrito a final de curso y de la cual el estudiante obtenía una calificación y revisión si se solicitaba. En el camino hacia el Espacio Europeo de Educación Superior, esta asignatura consta de 9 créditos que equivalen a un total de 255 horas de trabajo presencial y no presencial del estudiante. En los años académicos 2005-06 y 2006-07 se ha creado una guía de trabajo para la gestión de la actividad no presencial con el objetivo de alcanzar aprendizajes a nivel de aplicación y solución de problemas/pensamiento crítico (Bloom, 1975) siguiendo las recomendaciones de la Agencia para la Calidad del Sistema Universitario de Cataluña (2005). La guía incorpora: los objetivos de aprendizaje, los criterios de evaluación, la descripción de las actividades, el cronograma semanal de trabajos para todo el curso, la especificación de las tutorías programadas para la revisión de los diversos pasos del proceso de evaluación psicológica y el uso del foro para el conocimiento, análisis y crítica constructiva de las evaluaciones realizadas por los compañeros
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task