980 resultados para Laser-Ion acceleration, Relativistic Laser-Plasma interaction


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel materials. Room temperature operation has been achieved up to 3 THz, with noise equivalent power levels < 10-10 W/Hz1/2, and high-speed response already suitable for large area THz imaging applications. © 2013 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Femtosecond laser pulses are used in order to induce dielectric breakdown in gaseous mixtures, namely in some reactive air-methane mixtures. The light emitted from the laser induced plasma was analyzed while the main emission features are identified and assigned. From the analysis of the emission spectra, a linear relationship was found to hold between the intensity of some spectral features and methane content. Finally, the use of femtosecond laser induced breakdown as a tool for the in situ determination of the composition of gaseous mixtures (e.g., equivalence ratio) is also discussed. © 2013 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, H α and H β, and some molecular origin emissions were the most prominent spectral features, while the CN (B 2Σ +-X 2Σ +) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures. © 2012 American Institute of Physics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have fabricated surface plasmon modulated nano-aperture vertical-cavity surface-emitting lasers (VCSELs) from common 850 nm VCSELs using focus ion beam etching with Ga+ ion source. The far-field output power is about 0.3 mW at a driving current of 15 mA with a sub-wavelength aperture surrounded by concentric periodic grooves. The enhancement of transmission intensity can be explained by diffraction and enhanced fields associated with surface plasmon. This structure also exhibits beaming properties.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have studied the growth of GaInNAs/GaAs quantum well (QW) by molecular beam epitaxy using a DC plasma as the N sourer. The N concentration was independent of the As pressure and the In concentration, but inversely proportional to the growth rate. It was almost independent of T, over the range of 400-500 degreesC, but dropped rapidly when T-g exceeded 500 degreesC. Thermally-activated N surface segregation is considered to account for the strong falloff of the N concentration. As increasing N concentration, the steep absorption edge of the photovoltage spectra of GaInNAs/GaAs QW became gentle, the full-width at half-maximum of the photoluminescence (PL) peal; increased rapidly, and a so-called S-shaped temperature dependence of PL peak energy showed up. All these were attributed to the increasing localized state as N concentration. Ion-induced damage was one of the origins of the localized state. A rapid thermal annealing procedure could effectively remote the localized state. (C) 2001 Elsevier Science D.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Bandgap tuning of the InGaAsP/InP multiple quant um well (MQW) laser structure by the impurity-free vacancy diffusion (IFVD) is investigated using photoluminescence. It has been demonstrated that the effects of the plasma bombardment to the:sample surface involved in the IFVD technique can enhance the intermixing of the InGaAsP/InP MQW laser structure. The reliability of the IFVD technique, particularly the effects of the surface decomposition and the intrinsic defects formed in the growth or preparation of the wafer, has been discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant. (C) 2000 American Institute of Physics. [S0003- 6951(00)01535-7].

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A design of single-mode distributed feedback quantum cascade lasers (DFB-QCLs) with surface metal grating is described. A rigorous modal expansion theory is adopted to analyse the interaction between the waveguide mode and the surface plasmon wave for different grating parameters. A stable single-mode operation can be obtained in a wide range of grating depths and duty cycles. The single-mode operation of surface metal grating DFB-QCLs at room temperature for lambda = 8.5 mu m is demonstrated. The device shows a side-mode suppression ratio of above 20 dB. A linear tuning of wavelength with temperature indicates the stable single-mode operation without mode hopping.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The characteristics of proton beam generated in the interaction of an ultrashort laser pulse with a large prepulse with solid foils are experimentally investigated. It is found that the proton beam emitted from the rear surface is not well collimated, and a "ring-like" structure with some "burst-like" angular modulation is presented in the spatial distribution. The divergence of the proton beam reduces significantly when the laser intensity is decreased. The "burst-like" modulation gradually fades out for the thicker target. It is believed that the large divergence angle and the modulated ring structure are caused by the shock wave induced by the large laser prepulse. A one-dimensional hydrodynamic code, MED103, is used to simulate the behavior of the shock wave produced by the prepulse. The simulation indicates that the rear surface of the foil target is significantly modified by the shock wave, consequently resulting in the experimental observations. (c) 2006 American Institute of Physics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Absorption spectra of YAlO3:Nd for the three crystallographic axes are investigated at room temperature, The spectral strengths indicate that the absorption coefficient of YAlO3:Nd is anisotropic. The anisotropy of the local electric field acting on the rare-earth ion in a laser crystal is considered, An extended Judd-Ofelt theory is applied to calculate the absorption cross sections and oscillator strengths of the electric-dipole transitions in the different principal directions. Three groups of the phenomenological parameters are derived from a least-squares-fitting procedure. We also analyze theoretically the anisotropy of the optical absorption of YAlO3:Nd crystal in detail. (C) 1997 American Institute of Physics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22μm-wide and 2mm-long epilayer-up bonded device.