912 resultados para Laser cooling and trapping


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon particles synthesized by acetylene pyrolysis in a porous graphite reactor have been investigated. The intimate chemical and physical structures of the particles were probed by proton nuclear magnetic resonance spectroscopy, infrared Fourier transform spectroscopy and X-ray diffraction. The analysis points towards a chemical structure composed of soluble low-mass aromatics surrounding small insoluble larger aromatic islands bridged by aliphatic groups. The diffraction profile indicates that the particles are mostly amorphous with small crystalline domains of not, vert, similar6.5 Å composed of a few stacked graphene layers. The properties of these particles are compared with these obtained with other types of production methods such as laser pyrolysis and combustion flames. The results are briefly discussed in the context of the evolution of infrared interstellar emitters. Possible uses of the reactor are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description of the work Garden of Shrinking Violets is a collection of six half scale garments and three illustrations, continuing the practice-led research project into design for disassembly, developed in the work Shrinking Violets (2015). All garments are constructed in laser cut modules that enable the items to be reassembled in new combinations. The project extended the materials used to include ahimsa (peace) silk, silk organza and silk twill. The pattern pieces have internal laser cut grids of 5mm circles, allowing the textiles to be layered, threaded and knotted to achieve rich embellished surfaces that play with the transparencies and colour overlays of the sheer and opaque silks. Research Background Conceptually grounded in design for sustainability, the aim of the work is to develop approaches to garment construction that could allow users to engage with the garments by adding, removing and reconfiguring elements. This approach to design considers the use and end-of-life phases of the transient fashion garment through considering how the garments can be later disassembled. Research Contribution This construction process is unique in being not only a patterning device but also integral to the garment’s construction. This work sits at the intersection of technical design and craft: the laser cutting and technical approach to developing new forms of garment construction is coupled with the artisanal approach of hand-knotting, a reference to traditional quilting techniques, as a method to layer and pattern the textiles. The technique developed in Shrinking Violets was extended to experiment with different grid structures, knotting devices, and decorative fringing. The result is a proposed construction system in which the laser cut grid and knotting form a decorative patterning device, but are also integral to the garments’ construction. Research Significance Garden of Shrinking Violets was exhibited at artisan gallery’s Ivory Street window, Brisbane, January 18 – February 28 2016. The work was selected by artisan gallery exhibition curators. As part of artisan gallery’s public programming, the author participated in a panel discussion: ‘Constructive conversations: deconstruction and reconstruction in contemporary craft and design’ with jeweller Elizabeth Shaw and visual arts lecturer Courtney Pedersen, 20 February 2016. Photography used in illustrations by Jonathan Rae

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loop heat pipe is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications (such as in avionic cooling and submarines). Hard fill of a loop heat pipe occurs when the compensation chamber is full of liquid. A theoretical study is undertaken to investigate the issues underlying the loop beat pipe hard-fill phenomenon. The results of the study suggest that the mass of charge and the presence of a bayonet have significant impact on the loop heat pipe operation. With a largern mass of charge, a loop heat pipe hard fills at a lower heat load. As the heat load increases, there is a steep rise in the loop heat pipe operating temperature. In a loop heat pipe with a saturated compensation chamber, and also in a hard-filled loop heat pipe without a bayonet, the temperature of the compensation chamber and that of the liquid core are nearly equal. When a loop heat pipe with a bayonet hard fills, the compensation chamber and the evaporator core temperatures are different.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major drawback in using bulk metallic glasses (BMGs) as structural materials is their extremely poor fatigue performance. One way to alleviate this problem is through the composite route, in which second phases are introduced into the glass to arrest crack growth. In this paper, the fatigue crack growth behavior of in situ reinforced BMGs with crystalline dendrites, which are tailored to impart significant ductility and toughness to the BMG, was investigated. Three composites, all with equal volume fraction of dendrite phases, were examined to assess the influence of chemical composition on the near-threshold fatigue crack growth characteristics. While the ductility is enhanced at the cost of yield strength vis-a-vis that of the fully amorphous BMG, the threshold stress intensity factor range for fatigue crack initiation in composites was found to be enhanced by more than 100%. Crack blunting and trapping by the dendritic phases and constraining of the shear bands within the interdendritic regions are the micromechanisms responsible for this enhanced fatigue crack growth resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conventional magnesium alloy, AZ91D, and two creep resistant magnesium alloys, developed for powertrain applications, MRI 153M and MRI 230D, are prepared by high pressure die casting. These alloys are tested for their creep behaviour in the continuous manner, as is the Current practice, and in the interrupted manner, which represents the real life Situation more closely. It is observed that the interrupted creep tests give rise to a primary creep appearing at the beginning of each cycle resulting in a higher average strain rate than that encountered in the continuous creep tests. Further, the shorter the cycle time, higher is the average strain rate in the interrupted creep tests. A higher average strain rate will give rise to a higher strain over the same period. This is attributed to the recovery taking place during the cooling and heating between two cycles. The effect of additional precipitation during interrupted creep tests depends on the nature of the precipitates. The additional precipitation of beta phase during the cooling and heating between two cycles increases the steady state strain rate in the AZ91D and MRI 153M alloys. whereas the additional precipitation of C36 phase during the cooling and heating between two cycles decreases the steady state strain rate in the MRI 230D alloy. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and trapping to vacancies and surfaces. Results from the energetics of pure tungsten defects were used in the development of an classical bond-order potential for describing the tungsten defects to be used in molecular dynamics simulations. The developed potential was utilized in determination of the defect clustering and annihilation properties. These results were further employed in binary collision and rate theory calculations to determine the evolution of large defect clusters that trap hydrogen in the course of implantation. The computational results for the defect and trapped hydrogen concentrations were successfully compared with the experimental results. With the aforedescribed multiscale analysis the experimental results within this thesis and found in the literature were explained both quantitatively and qualitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of disorder on the electrical resistance near the superconducting transition temperature in the paracoherence region of high temperature YBa2CU3O7-delta (YBCO) thin film superconductor is reported. For this, c-axis oriented YBa2Cu3O7-delta thin films having superconducting transition width varying between 0.27 K and 6 K were deposited using laser ablation and high pressure oxygen sputtering techniques. Disorder in these films was further created by using 100 MeV oxygen and 200 MeV silver ions with varying fluences. It is observed that the critical exponent in the paracoherence region for films with high transition temperature and small transition width is in agreement with the theoretically predicted value (gamma = 1.33) and is not affected by disorder, while for films with lower transition temperature and larger transition width the value of exponent is much larger as compared to that theoretically predicted and it varies from sample to sample and usually changes with disorder induced by radiation. This difference in the behaviour of the exponent has been explained on the basis of differences in the strength of weak links and the transition between temperatures T. and T, is interpreted as a percolation like transition with disorder. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman scattering experiments have been performed on ferroelastic CsIO4 over the temperature range 323K to 200K during cooling and heating cycles. The spectra display marked changes at 256K and 244K during the cooling cycle and at 287K and 291K during the heating cycle. The transition at 256K is suggested to be from normal to incommensurate phase which changes over to a commensurate structure at 244K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metsäsuunnittelussa tarvittavan metsävaratiedon keräämisessä ollaan Suomessa siirtymässä kuvioittaisesta arvioinnista laserkeilaus- ja ilmakuvapohjaiseen kaukokartoitukseen. Tämän tutkimuksen tarkoitus oli selvittää kuvion kokonaistilavuuden ja läpimittajakauman ennustamisen tarkkuus koealan metsikkö- ja puustotunnuksista MSN-, PRM-, ML- ja FMM-menetelmiä sekä Weibull-jakaumaa hyödyntäen seuraavilla tavoilla: 1. PRM-menetelmällä hilatasolla, 2. PRMmenetelmällä kuviotasolla, 3. ML-menetelmällä hilatasolla ja 4. ML-menetelmällä kuviotasolla. Lisäksi kuvion kokonaistilavuuden ennustamisen tarkkuus selvitettiin hyödyntäen kuviolle tuotettua runkolukusarjaa. Tulokset laskettiin puulajikohtaisesti männylle, kuuselle, koivulle ja muille puulajeille. Puulajien tulokset laskettiin kuviotasolla yhteen. Lisäksi selvitettiin menetelmien laskenta-ajan ja tallennustilan tarve. Tutkimuksen aineistona käytettiin Hämeen ammattikorkeakoulun Evon toimipisteen metsistä mitattuja kiinteäsäteisiä ympyräkoealoja, joita oli 249 kappaletta. Hakkuukoneella mitattiin 12kuvion, joiden pinta-alat vaihtelivat välillä 0,2 – 1,94 hehtaaria, puustotiedot. Aluepohjaisen laserkeilausaineiston pulssin tiheys oli 1,8/m2 ja ilmakuvien pikselikoko 0,5 metriä. Kuvion kokonaistilavuus ennustettiin tai estimoitiin laserkeilaus- ja ilmakuva-aineiston piirteiden avulla koealojen puustotunnuksista. Tulokset laskettiin erikseen kaikille kuvioille ja kuvioille, joiden pinta-ala oli yli 0,5 hehtaaria. Yli 0,5 hehtaarin kuvioita oli 8 kappaletta. Kuvion hilojen naapureina käytettiin 1 - 10 koealaa. Menetelmästä ja naapurien määrästä riippuen kokonaistilavuuden suhteellinen RMSE ja harha vaihtelivat välillä 20,76 – 52,86 prosenttia ja -12,04 – 46,54 prosenttia. Vastaavat luvut yli 0,5 hehtaarin kuvioilla olivat 6,74 – 59,41 prosenttia ja -8,04 – 49,59 prosenttia. Laskenta-aika vaihteli menetelmien ja käytettyjen naapurien määrän mukaan voimakkaasti. Kehittyneemmällä ohjelmoinnilla ja ohjelmistolla laskenta-ajat voivat laskea merkittävästi. Tallennustila ei testatuilla menetelmillä ole rajoittava tekijä laajassakaan mittakaavassa. Läpimittajakauman perusteella PRM-menetelmä ennustaa puulajille erittäin kapean läpimittajakauman, jos koeala koostuu vain muutamasta lähes samankokoisesta puusta. Tämä vaikutti tuloksiin erityisesti menetelmällä PRM2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental setup using radiative heating has been used to understand the thermo-physical phenomena and chemical transformations inside acoustically levitated cerium nitrate precursor droplets. In this transformation process, through infrared thermography and high speed imaging, events such as vaporization, precipitation and chemical reaction have been recorded at high temporal resolution, leading to nanoceria formation with a porous morphology. The cerium nitrate droplet undergoes phase and shape changes throughout the vaporization process. Four distinct stages were delineated during the entire vaporization process namely pure evaporation, evaporation with precipitate formation, chemical reaction with phase change and formation of final porous precipitate. The composition was examined using scanning and transmission electron microscopy that revealed nanostructures and confirmed highly porous morphology with trapped gas pockets. Transmission electron microscopy (TEM) and high speed imaging of the final precipitate revealed the presence of trapped gases in the form of bubbles. TEM also showed the presence of nanoceria crystalline structures at 70 degrees C. The current study also looked into the effect of different heating powers on the process. At higher power, each phase is sustained for smaller duration and higher maximum temperature. In addition, the porosity of the final precipitate increased with power. A non-dimensional time scale is proposed to correlate the effect of laser intensity and vaporization rate of the solvent (water). The effect of acoustic levitation was also studied. Due to acoustic streaming, the solute selectively gets transported to the bottom portion of the droplet due to strong circulation, providing it rigidity and allows it become bowl shaped. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlxGa1-xN alloys with x=0.375, 0.398, 0.401, 0.592 and 0.696 were deposited on sapphire substrate by the hydride-vapor-phase epitaxy (HVPE) method. Thermal effusivity measurements were carried out on AlxGa1-xN alloys using a thermal microscope at room temperature. The lag between sinusoidal heating laser wave and thermoreflectance wave was used to measure the thermal diffusivity. Thermal conductivity values of the AlxGa1-xN alloys were also obtained as a function of AIN mole fraction in the alloy. The thermal conductivity was found to decrease with increasing AIN fraction and the experimental data agree with values estimated using the virtual crystal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi1.5Zn1.0Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 tunable multilayer thin film has been fabricated by pulsed laser ablation and characterized. Phase composition and microstructure of multilayer films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The film has very smooth surface with RMS roughness of 1.5-2nm and grain size of 100-150 nm. Total film thickness has been measure to be 375 nm. The BZN thin films at 300 K, on Pt(1 1 1)/SiO2/Si substrate showed zero-field dielectric constant of 105 and dielectric loss tangent of 0.002 at frequency of 0.1 MHz. Thin films annealed at 700 degrees C shows the dielectric tunability of 18% with biasing field 500 kV/cm at 0.1 MHz. The multilayer thin film shows nonferroelectric behavior at room temperature. The good physical and electrical properties of multilayer thin films make them promising candidate for tunable microwave device applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical description of thermodynamic properties during glass transition has been questioned by the entropy-loss model. The uncompensated loss of entropy at the glass transition temperature and zero residual entropy is at the heart of the controversy. Both the models are critically reviewed. A unified model is presented which incorporates features of both entropy loss and residual entropy. It implies two different types of contributions to the entropy of the supercooled liquid, one of which vanishes at the transition and the other which contributes to residual entropy. Entropy gain during spontaneous relaxation of glass, and the nature of heat capacity `hysteresis' during cooling and heating through the glass transition range support the proposed model. Experiments are outlined for differentiating between the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the effect of dual beam excitation on the photoluminescence (PL) from PbS quantum dots in polyvinyl alcohol by using two excitation lasers, namely Ar+ (514.5 nm) and He-Ne laser (670 nm). Both sources of excitation gave similar PL spectra around 1.67 eV (related to shallow traps) and 1.1 eV (related to deep traps). When both lasers were used at the same time, we found that the PL induced by each of the lasers was partly quenched by the illumination of the other laser. The proposed mechanism of this quenching effect involves traps that are populated by one specific laser excitation, being photo-ionized by the presence of the other laser. Temperature, laser intensity and modulation frequency dependent quenching efficiencies are presented in this paper. This reversible modulation has potential for optical switching and memory device applications. (C) 2010 Elsevier B.V. All rights reserved.