947 resultados para Larval Metamorphosis
Resumo:
*Table of Contents* Research & farming techniques Nursery rearing of Puntius goniotus: A preliminary trial K.N. Mohnta, J.K. Jena & S.N. Mohanty Artemia enrichment and biomass production for larval finfish and shellfish culture A.S. Ninawe Vembanad Lake: A potential spawner bank of the giant freshwater prawn Macrobrachium rosenbergii on the southwest coast of India Paramaraj Balamurugan, Pitchaimuthu Mariappan & Chellam Balasundaram Seed production of mud crab Scylla serrata at the Rajiv Gandhi Center for Aquaculture, Tamil Nadu, India Mohamed Shaji, Emilia T. Quinitio, Thampi Samraj, S. Kandan, K. Ganesh, Dinesh Kumar, S. Arulraj, S. Pandiarajan, Shajina Ismail and K. Dhandapan. Sustainable aquaculture Fish wastes in urban and suburban markets of Kolkata: Problems and potentials Kausik Mondal, Anilava Kaviraj & P.K. Mukhopadhyay People in aquaculture Peter Edwards writes on rural aquaculture: Farming carps in leased ponds by groups of poor women in Chandpur, Bangladesh Aquatic animal health Lymphocystis disease and diagnostic methods in China Jing Xing, Xiuzhen Sheng & Wenbin Zhan Asia-Pacific Marine Finfish Aquaculture Network Mesocosm technology advances grouper culture in northern Australia Elizabeth Cox, Peter Fry & Anjanette Johnston
Resumo:
*Table of Contents* Sustainable Aquaculture Peter Edwards writes on rural aquaculture: Peri-urban aquaculture in Kolkata A case of informal shrimp farmers association and its role in sustainable shrimp farming in Tamil Nadu, India M. Kumaran, N. Kalaimani, K. Ponnusamy, V.S. Chandrasekaran, D. Deboral Vimala Diffusion and adoption of shrimp farming technologies M. Kumaran, K. Ponnusamy and N. Kalaimani Farmers as Scientists: Aquaculture education in India - opportunities for global partnership M.C. Nandeesha Information system of fish germplasm resources in China Yang Ningsheng, Ge Chanshui, Ouyang Haiying, Yuan Yongming Status and development needs of freshwater crustacean aquaculture in China Xu Pao Research and Farming Techniques Aquaculture fundamentals: Getting the most out of your feed Part II: The role of macronutrients Simon Wilkinson Fish breeding in captivity - some innovative adaptations of technology by Bengal farmers N.R. Chattopadhyay Scientific guidelines for farmers engaged in freshwater prawn farming in India Vishal Saxena Marine Finfish Section News and publications Status and development of mariculture in Indonesia Ketut Sugama Aquatic Animal Health Use of probiotics in larval rearing of new candidate species Rehana Abidi Advice on aquatic animal health care: Problems in shrimp culture during the wet season (Thai/English languages) Pornlerd Chanratchakool
Resumo:
10 p.
Effects of shear on eggs and larvae of striped bass, morone saxatilis, and white perch, M. americana
Resumo:
Shear stress, generated by water movement, can kill fish eggs and larvae by causing rotation or deformation. Through the use of an experimental apparatus, a series of shear (as dynes/cm2)-mortality equations for fixed time exposures were generated for striped bass and white perch eggs and larvae. Exposure of striped bass eggs to a shear level of 350 dynes/cm2 kills 36% of the eggs in 1 min; 69% in 2 min, and 88% in 4 min; exposure of larvae to 350 dynes/cm2 kills 9.3% in 1 min, 30.0% in 2 min, and 68.1% in 4 min. A shear level of 350 dynes/cm2 kills 38% of the white perch eggs in 1 min, 41% in 2 min, 89% in 5 min, 96% in 10 min, and 98% in 20 min. A shear level of 350 dynes/cm2 applied to white perch larvae destroys 38% of the larvae in 1 min, 52% in 2 min, and 75% in 4 min. Results are experimentally used in conjunction with the determination of shear levels in the Chesapeake and Delaware Canal and ship movement for the estimation of fish egg and larval mortalities in the field.
Resumo:
Mollusks were sorted from samples of shell hash (obtained as bycatch during NOAA-sponsored studies of larval and juvenile fish distribution), and analyzed to gain qualitative insights on species composition, distribution and habitat affinities of the molluscan fauna on the continental shelf off Georgia. Samples came from beam trawls at 37 stations located in the immediate vicinity and offshore of the Gray’s Reef National Marine Sanctuary (GRNMS) at depths of 4.9 to 103 m. Two hundred sixty-three (263) taxa of mollusks (~58% as dead shells only) were collected, and nearly all (~99%) were identified to the species level. Ninety-seven of these taxa appeared in samples from one or more of the four stations established near the corners of the GRNMS. Samples were highly variable in terms of appearance, volume and species composition of mollusks, reflecting the extreme patchiness of benthic habitats within this region of the continental shelf. With very few exceptions, the mollusks were generally characteristic of either the Carolinian or Caribbean faunal provinces. The Georgia continental shelf, however, was outside the previously reported ranges for at least 16 of the species reported here. Most of these extralimital species were known previously from the East Coast of Florida, and represented northerly range extensions of 1-5° Latitude (110-560 km). One species represented a more significant range extension from the Bahamas and the southern Caribbean, and two represented southerly range extensions, known previously from only as close as off North Carolina. The high incidence of range extensions found in this study and the potential for discovery of additional species are discussed in the context of the diversity and patchiness of benthic habitats on the continental shelf of the region, and the sensitivity of species recruitment to variability in Gulf Stream patterns and global climate change. (PDF contains 52 pages)
Resumo:
The ontogeny of haematopoiesis in the perciform fish, spot Leiostomus xanthurus, differed from that reported as the norm for fishes, as exemplified by the cypriniform zebrafish Danio rerio, and observed in the batrachoidiform oyster toadfish Opsanus tau. Erythropoiesis in spot was first evident in the head kidney of yolk-sac larvae 3 days after hatching (DAH). No embryonic intermediate cell mass (ICM) of primitive stem cells or blood islands on the yolk were apparent within embryos. Erythrocytes were first evident in circulation near the completion of yolk absorption, c. 5 DAH, when larvae were c. 20 mm notochord length (LN). Erythrocyte abundance increased rapidly with larval development for c. 14 to 16 DAH, then became highly variable following changes in cardiac chamber morphology and volume. Erythrocytic haemoglobin (Hb) was not detected within whole larvae until they were 12 DAH or c. 31 mm LN, well after yolk and oil-globule absorption. The Hb was not quantified until larvae were >47 DAH or >7 mm standard length. The delayed appearance of erythrocytes and Hb in spot was similar to that reported for other marine fishes with small embryos and larvae. In oyster toadfish, a marine teleost that exhibits large embryos and larvae, the ICM and Hb were first evident in two bilateral slips of erythropoietic tissue in the embryos, c. 5 days after fertilization. Soon thereafter, erythrocytes were evident in the heart, and peripheral and vitelline circulation. Initial haematopoiesis in oyster toadfish conformed with that described for zebrafish. While the genes that code for the development of haematopoiesis are conserved among vertebrates, gene expression lacks phylogenetic pattern among fishes and appears to conform more closely with phenotypic expression related to physiological and ecological influences of overall body size and environmental oxygen availability.
Resumo:
Ontogenetic patterns in the percent dry weight (%DW) and energy density (joules per gram of wet weight) were studied in the early life stages of the subtropical estuarine and marine gray snapper Lutjanus griseus and the warmtemperate estuarine and marine spotted seatrout Cynoscion nebulosus. The %DW was variable for individuals of both species but increased significantly through larval to juvenile stages (<20% for fish ,50 mm standard length to 20–30% for fish >50 mm). The lipid percentage, which was determined only for gray snapper, was also variable between individuals but showed significant increase with body size. Strong relationships between percent dry weight and energy density were evident for both species; however, the slopes of regressions were significantly lower than in general multispecies models, demonstrating the need for species- and stagespecific energy density data in bioenergetics models.
Resumo:
Ichthyoplankton was sampled at 14 stations with 60 cm bongo nets fitted with 0.333 mm mesh in basins throughout Florida Bay in 1994-1995. In addition, I compared collections made using an epibenthic sled to those made with standard ichthyoplankton bongo nets at four stations during July 1997-November,1999 to determine ifthe two types of gear are complementary. In 1994-1995, in descending order of abundance, Clupeiformes, Gobiidae, Callionymidae, Sciaenidae, Labrisomidae, Soleidae and Blenniidae dominated the ichthyoplankton. Densities of clupeiforms were generally very high (> 100 larvae 100 m-3) or high (10.0 - 99.9 larvae 100 m-3). Gobiid larvae were ubiquitous with highest densities occurring in waters in close proximity to the Gulf of Mexico (109.7 larvae 100 m-3), lowest in two ofthree eastern Florida Bay stations (<1.0 larva 100 m-3). Spotted seatrout, Cynoscion nebulosus, dominated larval sciaenid collections and the only other sciaenid identified to species was the sand seatrout, Cynoscion arenarius. Taxa differed markedly between collections taken by epibenthic sled and standard ichthyoplankton bongo nets. Taxa collected with standard ichthyoplankton gear were those that spawn in Florida Bay and have pelagic larvae (i.e., engraulids and gobiids). Taxa collected with the sled were small resident species that have benthic larvae (i.e., syngnathids and cyprinodonts) or taxa that spawn outside the bay, but use the bay as a nursery area (i.e., gerreids and haemulids). Recently-settled red drum, Sciaenops ocellatus, were collected with the epibenthic sled in November 1999, although juveniles of this important gamefish are rare in the bay.
Resumo:
ENGLISH: Hitherto the only investigation dealing with the food and feeding of the larvae of the northern anchovy, Engraulis mordax Girard, was that of Arthur (1956). His main consideration was, however, with the Pacific sardine, Sardinops caerulea (Girard), and his work on the anchovy can only be considered preliminary. The present investigation is a continuation of Arthur's work on the food of the larval northern anchovy. SPANISH:El único trabajo publicado hasta ahora que trata sobre el alimento y nutrición de las larvas de la anchoa norteña, Engraulis mordax Girard, es el de Arthur (1956); pero su objeto principal fué la sardina del Pacifico, Sardinops caendea (Girard), y el estudio dedicado a la anchoa solo puede considerarse como preliminar. La presente investigación es una continuación del estudio de Arthur sobre el alimento de las larvas de la anchoa norteña.
Resumo:
Ichthyoplankton surveys in the Potomac River and Upper Chesapeake Bay were carried out in 1989 to estimate striped bass egg productions, age specific spawning biomasses of adult females, cohort-specific larval growth and mortality rates, and hatch dates of 8.0 mm larvae survivors. Possible consequences to recruitment of environmental factors were examined in 1989 and for data collected in 1987-1988. The temporal and spatial occurrences and distributions of eggs and larvae In both spawning areas are described and discussed in relation to environmental factors (temperature, rainfall, river discharge, pH, conductivity, zooplankton abundances) (PDF contains 319 pages)
Resumo:
Executive Summary: Tropical marine ecosystems in the Caribbean region are inextricably linked through the movement of pollutants, nutrients, diseases, and other stressors, which threaten to further degrade coral reef communities. The magnitude of change that is occurring within the region is considerable, and solutions will require investigating pros and cons of networks of marine protected areas (MPAs), cooperation of neighboring countries, improved understanding of how external stressors degrade local marine resources, and ameliorating those stressors. Connectivity can be broadly defined as the exchange of materials (e.g., nutrients and pollutants), organisms, and genes and can be divided into: 1) genetic or evolutionary connectivity that concerns the exchange of organisms and genes, 2) demographic connectivity, which is the exchange of individuals among local groups, and 3) oceanographic connectivity, which includes flow of materials and circulation patterns and variability that underpin much of all these exchanges. Presently, we understand little about connectivity at specific locations beyond model outputs, and yet we must manage MPAs with connectivity in mind. A key to successful MPA management is how to most effectively work with scientists to acquire the information managers need. Oceanography connectivity is poorly understood, and even less is known about the shape of the dispersal curve for most species. Dispersal kernels differ for various systems, species, and life histories and are likely highly variable in space and time. Furthermore, the implications of different dispersal kernels on population dynamics and management of species is unknown. However, small dispersal kernels are the norm - not the exception. Linking patterns of dispersal to management options is difficult given the present state of knowledge. The behavioral component of larval dispersal has a major impact on where larvae settle. Individual larval behavior and life history details are required to produce meaningful simulations of population connectivity. Biological inputs are critical determinants of dispersal outcomes beyond what can be gleaned from models of passive dispersal. There is considerable temporal and spatial variation to connectivity patterns. New models are increasingly being developed, but these must be validated to understand upstream-downstream neighborhoods, dispersal corridors, stepping stones, and source/sink dynamics. At present, models are mainly useful for providing generalities and generating hypotheses. Low-technology approaches such as drifter vials and oceanographic drogues are useful, affordable options for understanding local connectivity. The “silver bullet” approach to MPA design may not be possible for several reasons. Genetic connectivity studies reveal divergent population genetic structures despite similar larval life histories. Historical stochasticity in reproduction and/or recruitment likely has important, longlasting consequences on present day genetic structure. (PDF has 200 pages.)
Resumo:
Almost 120 days at sea aboard three NOAA research vessels and one fishing vessel over the past three years have supported biogeographic characterization of Tortugas Ecological Reserve (TER). This work initiated measurement of post-implementation effects of TER as a refuge for exploited species. In Tortugas South, seafloor transect surveys were conducted using divers, towed operated vehicles (TOV), remotely operated vehicles (ROV), various sonar platforms, and the Deepworker manned submersible. ARGOS drifter releases, satellite imagery, ichthyoplankton surveys, sea surface temperature, and diver census were combined to elucidate potential dispersal of fish spawning in this environment. Surveys are being compiled into a GIS to allow resource managers to gauge benthic resource status and distribution. Drifter studies have determined that within the ~ 30 days of larval life stage for fishes spawning at Tortugas South, larvae could reach as far downstream as Tampa Bay on the west Florida coast and Cape Canaveral on the east coast. Together with actual fish surveys and water mass delineation, this work demonstrates that the refuge status of this area endows it with tremendous downstream spillover and larval export potential for Florida reef habitats and promotes the maintenance of their fish communities. In Tortugas North, 30 randomly selected, permanent stations were established. Five stations were assigned to each of the following six areas: within Dry Tortugas National Park, falling north of the prevailing currents (Park North); within Dry Tortugas National Park, falling south of the prevailing currents (Park South); within the Ecological Reserve falling north of the prevailing currents (Reserve North); within the Ecological Reserve falling south of the prevailing currents (Reserve South); within areas immediately adjacent to these two strata, falling north of the prevailing currents (Out North); and within areas immediately adjacent to these two strata, falling south of the prevailing currents (Out South). Intensive characterization of these sites was conducted using multiple sonar techniques, TOV, ROV, diver-based digital video collection, diver-based fish census, towed fish capture, sediment particle-size, benthic chlorophyll analyses, and stable isotope analyses of primary producers, fish, and, shellfish. In order to complement and extend information from studies focused on the coral reef, we have targeted the ecotone between the reef and adjacent, non-reef habitats as these areas are well-known in ecology for indicating changes in trophic relationships at the ecosystem scale. Such trophic changes are hypothesized to occur as top-down control of the system grows with protection of piscivorous fishes. Preliminary isotope data, in conjunction with our prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be the source of a significant amount of the primary production ultimately fueling fish production throughout TER and downstream throughout the range of larval fish dispersal. Therefore, the status and influence of the previously neglected, non-reef habitat within the refuge (comprising ~70% of TER) appears to be intimately tied to the health of the coral reef community proper. These data, collected in a biogeographic context, employing an integrated Before-After Control Impact design at multiple spatial scales, leave us poised to document and quantify the postimplementation effects of TER. Combined with the work at Tortugas South, this project represents a multi-disciplinary effort of sometimes disparate disciplines (fishery oceanography, benthic ecology, food web analysis, remote sensing/geography/landscape ecology, and resource management) and approaches (physical, biological, ecological). We expect the continuation of this effort to yield critical information for the management of TER and the evaluation of protected areas as a refuge for exploited species. (PDF contains 32 pages.)
Resumo:
The Tortugas South Ecological Reserve, located along the margin of the southwest Florida carbonate platform, is part of the largest no-take marine reserve in the U.S. Established in July 2001, the reserve is approximately 206 km2 in area, and ranges in depths from 30 m at Riley’s Hump to over 600 m at the southern edge of the reserve. Geological and biological information for the Tortugas South Reserve is lacking, and critical for management of the area. Bathymetric surveys were conducted with a Simrad EM 3000 multibeam echosounder at Riley’s Hump and Miller’s Ledge, located in the northern and central part of the reserve. Resulting data were used to produce basemaps to obtain geological ground truth and visual surveys of biological communities, including reef fishes. Visual surveys were conducted using SCUBA and the Phantom S2 Remotely Operated Vehicle (ROV) at Riley’s Hump. Visual surveys were conducted using the ROV and the Deepworker 2000 research submersible along Miller’s Ledge, within and outside of the reserve. A total of 108 fishes were recorded during SCUBA, ROV, and submersible observations. Replicate survey transects resulted in over 50 fishes documented at Miller’s Ledge, and eight of the top ten most abundant species were planktivores. Many species of groupers, including scamp (Mycteroperca phenax), red grouper (Epinephelus morio), snowy grouper (E. niveatus), speckled hind (E. drummondhayi), and Warsaw grouper (E. nigritus), are present in the sanctuary. Numerous aggregations of scamp and a bicolor phase of the Warsaw grouper were observed, indicating the importance of Miller’s Ledge as a potential spawning location for both commercially important and rare deep reef species, and as a potential source of larval recruits for the Florida Keys and other deep reef ecosystems of Florida
Resumo:
This regional atlas summarizes and illustrates the distribution and abundance patterns of fish eggs and larvae of 102 taxa within 34 families found in the Northeast Pacific Ocean including the Bering Sea, Gulf of Alaska, and U.S. west coast ecosystems. Data were collected over a 20+ year period (1972–1996) by the Recruitment Processes Program of the Alaska Fisheries Science Center (AFSC). Ichthyoplankton catch records used in this atlas were generated from 11,379 tows taken during 100 cruises. For each taxon, general life history data are briefly summarized from the literature. Published information on distribution patterns of eggs and larvae are reviewed for the study area. Data from AFSC ichthyoplankton collections were combined to produce an average spatial distribution for each taxon. These data were also used to estimate mean abundance and percent occurrence by year and month, and relative abundance by larval length and season. Abundance from each tow was measured as catch per 10 m2 surface area. A larval distribution and abundance map was produced with a geographic information system using ArcInfo software. For taxa with identifiable pelagic eggs, distribution maps showing presence or absence of eggs are presented. Presence or absence of adults in the study area is mapped based on recent literature and data from AFSC groundfish surveys. Distributional records for adults and early life history stages revealed several new range extensions. (PDF file contains 288 pages.)
Resumo:
Polydora nuchalis Woodwick, 1953 (Polychaeta: Spionidae) is a protandric hermaphrodite commonly inhabiting intertidal mud flats in southern California. The species exhibits lecithotrophic larval development and adelphophagia. Reproduction of P. nuchalis was monitored for a year at four sites: Catalina Harbor, San Gabriel River, Huntington Harbour, and Malibu Lagoon. Females deposited from 11 to 31 egg capsules in their tubes, with up to 230 eggs per capsule. An average of 3% of the eggs developed into larvae: the remaining were nurse eggs serving as food for the developing larvae. Reproductive output was quantified by determining the number and size of larvae and nurse eggs for individual capsules. Significant differences among the four populations were found for all the quantified variables. In addition, two size classes of nurse eggs were found to exist in capsules from all of the sites. Egg capsules were found throughout the year at San Gabriel River, but none were found during the winter months at the remaining three sites. Size/frequency data for juveniles and adults of the Catalina Harbor population indicate an annual cycle of recruitment. The laboratory experiment consisted of a 3 x 3 x 2 £actor1al design with replication testing the effects of temperature, salinity, and food supply on growth and reproduction of P. nuchalis. Increasing temperature resulted in significantly increased survivorship, growth rates, and percentage reproduction. It also produced a significant decrease in the size of the nurse eggs and the volume of food per larva. The number of egg capsules was maximum at the intermediate temperature. Increasing the salinity resulted in significant increases in survivorship and Class I nurse egg size. Increaaing food availability produced a significant increase in the percentage of worms reproducing. The interactive effect of salinity and £ood level produced significant changes in the number of larvae per capsule and the number of nurse eggs per capsule. However, the number of nurse eggs per larva did not differ significantly among the experimental treatment groups. (PDF contains 129 pages)