824 resultados para Lanthanum alloys
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Statement of problem. Removable partial dentures are affected by fatigue because of the cyclic mechanism of the masticatory system ansi frequent insertion and removal. Titanium and its alloys have been used in the manufacture of denture frameworks; however, preventive agents with fluorides are thought to attack titanium alloy surfaces.Purpose. This study evaluated, compared, analyzed the corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloy in different storage environments.Material and methods. For each metal, 33 dumbbell rods, 2.3 mm in diameter at the central segment, were cast in the Rematitan system. Corrosion-fatigue strength test was carried out through a universal testing machine with a load 30% lon er than the 0.2% offset yield strength and a combined influence of different: environments: in air at room temperature, with synthetic saliva, and with fluoride synthetic saliva. After failure, the number of cycles were recorded, and fracture surfaces were examined with on SEM.Results. ANOVA and Tukey's multiple comparison rest indicated that Ti-6Al-4V alloy achieved 21,269 cycles (SD = 8,355) against 19,157 cycles (SD = 3,624) for the commercially purr Ti. There were no significant differences between either metal in the corrosion-fatigue life for dry specimens, but when the solutions were present, the fatigue life was significantly reduced, probably because of the product-ion of corrosion pits caused by superficial reactions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AIM: To evaluate the adherence of Streptococcus mutans to the surface of the amalgam and copper/aluminum alloy samples and also evaluate the release of metallic ions. METHODS: The prepared medium was changed every 72 h and analyzed by atomic absorption spectrophotometer. Samples were removed from the prepared medium at 15, 30, 48 and 60 days. RESULTS: The result shows that ions released were statistically different among all groups, and so were both biofilm and pits formation and the corrosion induced by the S. mutans in both types of samples. SEM observation of the samples immersed in the prepared medium with S. mutans showed adherence of microorganisms on the whole surface, in all groups. CONCLUSIONS: The S. mutans adhere to both amalgam and copper/aluminum alloy causing corrosion of those restorations. S. mutans produced a greater ions release in Cu/Al alloy; in amalgam, the ions release was not influenced by exposure to S. mutans.
Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The main objective of this work is to illustrate an application of angular active control in a sectioned airfoil using shape memory alloys. In the proposed model, one wants to establish the shape of the airfoil profile based on the determination of an angle between its two sections. This angle is obtained by the effect of the shape memory of the alloy by passing an electric current that modifies the temperature of the wire through the Joule effect, changing the shape of the alloy. This material is capable of converting thermal energy into mechanical energy and once permanently deformed, the material can return to its original shape by heating. Due to the presence of nonlinear effects, especially in the mathematical model of the alloy, this work proposes the application of a control system based on fuzzy logic. Through numerical tests, the performance of the fuzzy controller is compared with an on-off controller applied in a sectioned airfoil model.
Resumo:
The basic carbonates of lanthanum with 10%, 20%, 50% and 80% of europium were prepared by precipitation from homogeneous solutions via the hydrolysis of urea, without the addition of an auxiliary anion, at two different temperatures. Elemental analysis, complexometric methods, X-ray diffraction patterns, solid state IR absorption, thermogravimetry/derivative thermogravimetry (TG/DTG) and differential thermal analysis (DTA) were used to characterise the compounds and study their thermal behaviour.
Resumo:
Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following finite-size scaling ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS. © World Scientific Publishing Company.
Resumo:
The electrochemical behaviour of Cu, Cu-Al and Cu-Al-Ag alloys in aqueous solutions of NaCl (0.5 M, pH = 3.00) was studied by means of voltammetric methods and electrochemical impedance spectroscopy. The surfaces were examined by SEM and EDX analysis. Cu-Al-Ag alloy shows a potentiodynamic behaviour similar to that of the pure copper electrode while the Cu-Al alloy presents some minor differences. In the active dissolution region the electrodes suffer pitting corrosion and in the other potential regions there are the formation of a passivant film with composition depending on the potential. The impedance responses of the electrodes are discussed. An electrodissolution mechanism is proposed and the effect of the alloying elements upon the impedance response and polarisation curves is explained. The main effects are due to the production of copper and silver chlorides and aluminium oxides/ hydroxides at the corroding interface. The addition of Al or (Al + Ag) increases the corrosion resistance of pure copper. © 1995.
Resumo:
The mechanism of electrochemical oxidation of surface reformed CuA1Ag alloys having different composition of heat treatment, in 0.5 M NaOH was studied by means of cyclic polarization, constant potential electrolysis, ICP, AA, SEM and EDX. The surface reformation consisted of a repetitive triangular potential sweep (RTPS) between H 2 and O 2 evolution at 100 mV s -1 in the working solution itself, performed in order to increase the electrode roughness and obtain a quasi-stationary I/E profile in which the potentiodynamic behaviour of copper and silver was clearly revealed. The alloys suffer aluminum dealloying after such an RTPS. The quasi-stationary cyclic polarization curve exhibits a multiplicity of current peaks which have been related to the electrochemical reactions involving the pure alloying elements. Complex potential perturbation programmes in regions having different anodic and cathodic limits allowed the study of the mechanism of the electrochemical oxidation of the surface reformed alloys and the compare with that corresponding to the pure metals. The basic differences between the electro-oxidation processes of the surface reformed CuA1Ag alloys with respect to those established for the high purity alloying metals are the splitting of the peaks corresponding to the formation of the Cu(I) and Ag(I) species. © 1991.
Resumo:
We propose a novel method to calculate the electronic Density of States (DOS) of a two dimensional disordered binary alloy. The method is highly reliable and numerically efficient, and Short Range Order (SRO) correlations can be included with no extra computational cost. The approach devised rests on one dimensional calculations and is applied to very long stripes of finite width, the bulk regime being achieved with a relatively small number of chains in the disordered case. Our approach is exact for the pure case and predicts the correct DOS structure in important limits, such as the segregated, random, and ordered alloy regimes. We also suggest important extensions of the present work. © 1995.
Resumo:
Introduction: Based on the importance of the integrity of the metal/ceramic interface, the purpose of this work was to evaluate the shear bond strength of the metal-ceramic union of two Co-Cr alloys (Wirobond C, Bego; Remanium 2000, Dentaurum) combined with Omega 900 ceramic (Vita Zahnfabrik). Material and Method: Eleven cylindrical matrixes were made for each alloy, and the metallic portion was obtained with the lost wax casting technique with standardized waxing of 4mm of height and of 4mm of diameter. The ceramic was applied according to the manufacturer's recommendations with the aid of a teflon matrix that allowed its dimension to be standardized in the same size as the metallic portion. The specimens were submitted to the shear bond test in an universal testing machine (EMIC), with the aid of a device developed for such intention, and constant speed of 0.5mm/min. Results and Conclusions: The mean resistance was 48.387MPa for Wirobond C alloy, with standard deviation of 17.718, and 55.956MPa for Remanium 2000, with standard deviation of 17.198. No statistically significant difference was observed between the shear strength of the two metal-ceramic alloys.
Resumo:
The identification, characterization and stability range of the phases present in a series of Cu-Al alloys, with Al content from 11.0 to 15.0 wt.%, were studied by Differential Thermal Analysis (DTA), Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Auger Electron Spectroscopy (AES), Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD). In some alloys and in a temperature range from 790 degrees C to 850 degrees C the presence of black spots exhibiting regular shapes and an homogeneous distribution was noticed through metallographic microscopy. Data from TEM and AES indicate that these spots are made of two monocrystalline phases having different Al contents and a crystallographic orientation relationship. (C) 1998 Elsevier B.V. S.A. All rights reserved.