962 resultados para Langmuir monolayer
Resumo:
Functionalized graphene is a versatile material that has well-known physical and chemical properties depending on functional groups and their coverage. However, selective control of functional groups on the nanoscale is hardly achievable by conventional methods utilizing chemical modifications. We demonstrate electrical control of nanoscale functionalization of graphene with the desired chemical coverage of a selective functional group by atomic force microscopy (AFM) lithography and their full recovery through moderate thermal treatments. Surprisingly, our controlled coverage of functional groups can reach 94.9% for oxygen and 49.0% for hydrogen, respectively, well beyond those achieved by conventional methods. This coverage is almost at the theoretical maximum, which is verified through scanning photoelectron microscope measurements as well as first-principles calculations. We believe that the present method is now ready to realize 'chemical pencil drawing' of atomically defined circuit devices on top of a monolayer of graphene. © 2014 Nature Publishing Group All rights reserved.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light represents a fundamental step for many different applications. Split-ring resonators, subwavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, with a maximum modulation depth of 18%. © 2014 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light, represents a fundamental step for many different applications. Split-ring resonators, sub-wavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 THz and 3.1 THz, with a maximum modulation depth of 18%.
Resumo:
The causative agent of lymphocystis disease that frequently occurs in cultured flounder Paralichthys olivaceus in China is lymphocystis virus (LV). In this study, 13 fish cell lines were tested for their susceptibility to LV. Of these, 2 cell lines derived from the freshwater grass carp Ctenopharyngodon idellus proved susceptible to the LV, and 1 cell line, GCO (grass carp ovary), was therefore used to replicate and propagate the virus. An obvious cytopathic effect (CPE) was first observed in cell monolayers at 1 d post-inoculation, and at 3 d this had extended to about 75% of the cell monolayer. However, no further CPE extension was observed after 4 d. Cytopathic characteristics induced by the LV were detected by Giemsa staining and fluorescence microscopic observation with Hoechst 33258 staining. The propagated virus particles were also observed by electron microscopy. Ultrastructure analysis revealed several distinct cellular changes, such as chromatin compaction and margination, vesicle formation, cell-surface convolution, nuclear fragmentation and the occurrence of characteristic 'blebs' and cell fusion. This study provides a detailed report of LV infection and propagation in a freshwater fish cell line, and presents direct electron microscopy evidence for propagation of the virus in infected cells. A possible process by which the CPEs are controlled is suggested.
Resumo:
The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.
Resumo:
We investigate theoretically the spin-independent tunneling magnetoresistance effect in a graphene monolayer modulated by two parallel ferromagnets deposited on a dielectric layer. For the parallel magnetization configuration, Klein tunneling can be observed in the transmission spectrum but at specific oblique incident angles. For the antiparallel magnetization configuration, the transmission can be blocked by the magneticelectric barrier provided by the ferromagnets. Such a transmission discrepancy results in a tremendous magnetoresistance ratio and can be tuned by the inclusion of an electric barrier.
Resumo:
We develop a modified two-step method of growing high-density and narrow size-distribution InAs/GaAs quantum dots (QDs) by molecular beam epitaxy. In the first step, high-density small InAs QDs are formed by optimizing the continuous deposition amount. In the second step, deposition is carried out with a long growth interruption for every 0.1 InAs monolayer. Atomic force microscope images show that the high-density (similar to 5.9x 10(10) CM-2) good size-uniformity InAs QDs are achieved. The strong intensity and narrow linewidth (27.7 meV) of the photoluminescence spectrum show that the QDs grown in this two-step method have a good optical quality.
Resumo:
AlGaN/GaN heterostructure using unintentionally doped AlN/GaN superlattices (SLs) as barrier layer is grown on C-plane sapphire by metal organic vapor deposition (MOCVD). Compared with the conventional Si-doped structure, electrical property is improved. An average sheet resistance of 287.1 Omega/square and high resistance uniformity of 0.82% are obtained across the 2-inch epilayer wafer with an equivalent Al composition of 38%. Hall measurement shows that the mobility of two-dimensional electron gas (2DEG) is 1852 cm(2)/V s with a sheet carrier density of 1.2 x 10(13) cm(-2) at room temperature. The root mean square roughness (RMS) value is 0.159 nm with 5 x 5 mu m(2) scan area and the monolayer steps are clearly observed. The reason for the property improvement is discussed. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effect of rapid thermal annealing on the InAs quantum dots (QDs) grown by atomic layer molecular beam epitaxy and capped with InGaAs layer has been investigated using transmission electron microscopy and photoluminescence (PL). Different from the previously reported results, no obvious blueshift of the PL emission of QDs is observed until the annealing temperature increases up to 800 degreesC. The size and shape of the QDs annealed at 750 degreesC have hardly changed indicating the relatively weak Ga/In interdiffusion, which is characterized by little blueshift of the PL peak of QDs. The QD size increases largely and a few large clusters can be observed after 800 degreesC RTA, implying the fast interdiffusion and the formation of InGaAs QDs. These results indicate that the delay of the blueshift of the PL peak of QDs is correlated with the abnormal interdiffusion process, which can be explained by two possible reasons: the reduction of excess-As-induced defects and the redistribution of In, Ga atoms around the InAs QDs resulted from the sub-monolayer deposition of InGaAs capping layer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have studied the effect of the post-growth rapid thermal annealing on optical and electrical properties of InAs/InAlAs/InP quantum wires with various InAs deposited thickness. Quite different annealing behaviors in photoluminescence and dark resistance are observed, which can be attributed to dislocations in samples. After annealing at 800 degrees C, quantum wires still exist in the sample with two monolayer InAs deposited thickness, but the temperature-dependent PL properties are changed greatly due to the intermixing of In/Al atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We, report on the influence of boron on the formation of Ge quantum dots. The investigated structure consists of a Ge wetting layer, on which a sub-monolayer boron is deposited and subsequently a Ge top layer. For sufficiently thin Ge top layers, the strain field induced by boron on Ge wetting layer destabilizes the Ge top layer and causes the formation of small Ge quantum dots. However, for thicker Ge top layers, boron on the Ge wetting layer diffuses into Ge layers, compensates partly the strain and delays the evolution of Ge quantum dots. By this method, small Ge quantum dots with high density as well as size uniformity can be formed by optimizing the growth condition. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present a new way to meet the amount of strain relaxation in an InGaN quantum well layer grown on relaxed GaN by calculating and measuring its internal field. With perturbation theory, we also calculate the transition energy of InGaN/GaN SQWs as affected by internal fields. The newly reported experimental data by Graham et al. fit our calculations well on the assumption that the InGaN well layer suffered a 20% strain relaxation, we discuss the differences between our calculated results and the experimental data. Our calculation suggests that with the increase of indium mole fraction in the InGaN/GaN quantum well, the effect of polarization fields on the luminescence of the quantum well will increase. Moreover, our calculation also suggests that an increase in the quantum well width by only one monolayer can result in a large reduction in the transition energy. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Unique spin splitting behaviors in ultrathin InAs layers, which show very different spin splitting characteristics between the InAs monolayer (ML) and submonolayer (SML) have been observed. While distinct spin splitting is observed in an InAs ML, no visible spin splitting is found in a 1/3 ML InAs SML. In addition, the spin relaxation time in the 1/3 ML InAs is found to be much longer than that in the 1 ML sample. These results are in good agreement with the theoretical prediction that the interexcitonic exchange interaction plays a dominant role in energy splitting, while the intraexciton exchange interaction controls the spin relaxation. (c) 2007 American Institute of Physics.
Resumo:
The wetting layer (WL) in InAs/GaAs quantum-dot systems has been studied by reflectance difference spectroscopy (RDS). Two structures related to the heavy-hole (HH) and light-hole (LH) related transitions in the WL have been observed. On the basis of a calculation model that takes into account the segregation effect and exciton binding energies, the amount of InAs in the WL (t(WL)) and its segregation coefficient ( R) have been determined from the HH and LH transition energies. The evolutions of tWL and R exhibit a close relation to the growth modes. Before the formation of InAs dots, t(WL) increases linearly from similar to 1 to similar to 1.6 monolayer (ML), while R increases almost linearly from similar to 0.8 to similar to 0.85. After the onset of dot formation, t(WL) is saturated at similar to 1.6 ML and R decreases slightly from 0.85 to 0.825. The variation of tWL can be interpreted by using an equilibrium model. Different variations of in-plane optical anisotropy before and after dot formation have been observed.
Resumo:
A new structure of GaAs photocathode was introduced. The Be-doping concentration is variable in the new structure compared with the constant concentration of Be in the normal photocathode. Negative electron affinity GaAs photocathodes were fabricated by alternate input of Cs and O. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathodes with the new structure is enhanced by at least 50% as compared to those with the monolayer structure. Accordingly, two main factors leading to the enhanced photosensitivity of the photocathodes were discussed. (c) 2005 Elsevier B.V. All rights reserved.